Math, asked by jahanwi76, 3 months ago

Pls answer this question (given in picture) ​

Attachments:

Answers

Answered by rakeshchettri2946
2

Answer:

here it's your answer in the above picture

Step-by-step explanation:

please ask if not understand

Attachments:
Answered by Anonymous
65

Question :-

\sf \frac{(-2)^4 \times (-3)^3 \times 7^3 }{ (-1)^6 × (-7)^2 \times 2^2 \times 3^2}

Answer :-

For negative base -

If the power are even, then the base is positive and if the power are odd then the base are negative.

\implies\sf \frac{2^4 \times (3 \times -1)^3 \times 7^3}{1 \times 7^2 \times 2^2 \times 3^2 }

\implies\sf \frac{2^4 \times 3^3 \times (-1) \times 7^3}{7^2 \times 2^2 \times 3^2}

\implies\sf 2^{4-2} \times 3^{3-2} \times 7^{3-2} \times (-1)

\implies\sf 2^2 \times 3 \times 7 \times (-1)

\implies\sf -84

\boxed{\sf \frac{(-2)^4 \times (-3)^3 \times 7^3 }{ (-1)^6 × (-7)^2 \times 2^2 \times 3^2} = -84}

Additional information :-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions