Math, asked by sreejapramanik1, 4 months ago

pls answer this question in simultaneous linear equation ​

Attachments:

Answers

Answered by EthicalElite
39

Question :

 \sf \dfrac{x+y}{2} + \dfrac{3x-5y}{4} = 2

 \sf \dfrac{x}{14} + \dfrac{y}{18} = 1

Answer :

 \sf \dfrac{x+y}{2} + \dfrac{3x-5y}{4} = 2 \:  \pink{- (1)}

 \sf \dfrac{x}{14} + \dfrac{y}{18} = 1 \: \pink{- (2)}

From equation (1) :

 \sf : \implies \dfrac{x+y}{2} + \dfrac{3x-5y}{4} = 2

 \sf : \implies \dfrac{2(x+y)}{2 \times 2} + \dfrac{3x-5y}{4} = 2

 \sf : \implies \dfrac{2x+2y}{4} + \dfrac{3x-5y}{4} = 2

 \sf : \implies \dfrac{(2x+2y) + (3x-5y)}{4} = 2

 \sf : \implies \dfrac{2x+2y + 3x-5y}{4} = 2

 \sf : \implies \dfrac{5x-3y}{4} = 2

 \sf : \implies 5x-3y = 2\times 4

 \sf : \implies 5x-3y = 8

 \sf : \implies 5x = 8 + 3y

 \sf : \implies x = \dfrac{8 + 3y}{5} \: \pink{-(3)}

Put in equation (2) :

 \sf : \implies \dfrac{\pink{\dfrac{8 + 3y}{5}}}{14} + \dfrac{y}{18} = 1

 \sf : \implies \dfrac{8 + 3y}{5} \times \dfrac{1}{14} + \dfrac{y}{18} = 1

 \sf : \implies \dfrac{8 + 3y}{70} + \dfrac{y}{18} = 1

By taking LCM :

 \sf : \implies \dfrac{18(8 + 3y)}{1260} + \dfrac{70y}{1260} = 1

 \sf : \implies \dfrac{144 + 54y}{1260} + \dfrac{70y}{1260} = 1

 \sf : \implies \dfrac{144 + 54y + 70y}{1260}= 1

 \sf : \implies \dfrac{144 + 124y}{1260}= 1

 \sf : \implies 144 + 124y= 1 \times 1260

 \sf : \implies 144 + 124y= 1260

 \sf : \implies 124y = 1260 - 144

 \sf : \implies 124y = 1116

 \sf : \implies y = \cancel{\dfrac{1116}{124}}

 \sf : \implies y = 9

 \large \underline{\boxed{\bf{\pink{y = 9}}}}

Put value of y in equation (3) :

 \sf : \implies x = \dfrac{8 + 3(\pink{9})}{5}

 \sf : \implies x = \dfrac{8 + 27}{5}

 \sf : \implies x = \cancel{\dfrac{35}{5}}

 \sf : \implies x = 7

 \large \underline{\boxed{\bf{\pink{x = 7}}}}

Hence, value of :

  •  \bf \pink{x = 7}
  •  \bf \pink{y = 9}
Similar questions