Math, asked by satyasmiley2006, 1 month ago

pls answer this question
it is very important pls ​

Attachments:

Answers

Answered by ajr111
8

Answer:

Given :

\bullet \ \mathrm{sinx + siny = \dfrac{1}{4}}

\bullet \ \mathrm{cosx + cosy = \dfrac{1}{3}}

To Prove :

\bullet \ \mathrm{tan\bigg(\dfrac{x + y}{2}\bigg)= \dfrac{3}{4}}

\bullet \ \mathrm{cot(x+y) = \dfrac{7}{24}}

Solution :

We know that,

\begin{gathered}\boxed{\begin{aligned} \mathrm { \bullet \ sinC + sinD} = & \mathrm{2sin\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)} \\\frac{\qquad \qquad \qquad \qquad }{}  & \frac{\qquad \qquad \qquad \qquad\qquad\qquad }{} \\ \mathrm { \bullet \ cosC + cosD} = & \mathrm{2cos\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)}  \\ \end{aligned}} \end{gathered}

As here,

\longmapsto \mathrm{sinx + siny = \dfrac{1}{4}}\ \text{and} \ \mathrm{cosx + cosy = \dfrac{1}{3}}

\implies \mathrm {sinx + siny = 2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg) = \dfrac{1}{4}} \ \ \ ---- [1]

\implies \mathrm {cosx + cosy = 2cos\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg) = \dfrac{1}{3}} \ \ \ - - - - [2]

Dividing 1 by 2, we get,

\implies \mathrm{\dfrac{2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)}{2cos\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)} = \dfrac{\bigg(\dfrac{1}{4}\bigg)}{\bigg(\dfrac{1}{3}\bigg)}}

\implies \mathrm{\dfrac{\not2sin\bigg(\dfrac{x+y}{2}\bigg)\bcancel{cos\bigg(\dfrac{x-y}{2}\bigg)}}{\not2cos\bigg(\dfrac{x+y}{2}\bigg)\bcancel{cos\bigg(\dfrac{x-y}{2}\bigg)}} = \dfrac{3}{4}}

\implies \mathrm{tan\bigg(\dfrac{x+y}{2}\bigg) = \dfrac{3}{4}}

Hence Proved!!

----------------------------------

Now,

\longmapsto\mathrm{cot(x+y) = cot\bigg(\dfrac{2(x+y)}{2}\bigg)}

Let (x+y)/2 be t

we know that,

\boxed{\mathrm{cot\theta = \dfrac{1}{tan\theta}}}

\implies \mathrm{\dfrac{1}{tan2t}}

Now, let us find tan2t then reciprocal of that will be the desired answer.

We know that,

\boxed{\mathrm{tan\theta = \dfrac{2tan\dfrac{\theta}{2}}{1 + tan^2\dfrac{\theta}{2}}}}

here, θ = t = (x+y)/2

\longmapsto \mathrm{tan2t = tan\bigg(\dfrac{2(x+y)}{2}\bigg) = \dfrac{2\times \dfrac{3}{4}}{1 - \bigg(\dfrac{3}{4}\bigg)^2}}

\implies \mathrm{tan\bigg(\dfrac{2(x+y)}{2}\bigg) = \dfrac{6 \times 4}{16 - 9}}

\implies \mathrm{tan\bigg(\dfrac{2(x+y)}{2}\bigg) = \dfrac{24}{7}}

\implies \mathrm{tan2t = \dfrac{24}{7}}

Recalling,

\longmapsto \mathrm{cot(x+y) = \dfrac{1}{tan2t}}

\implies \mathrm{cot(x+y) = \dfrac{1}{\bigg(\dfrac{24}{7}\bigg)}}

\implies \mathrm{cot(x+y) = \dfrac{7}{24}}

Hence proved!!

Hope it helps!!

Similar questions