Math, asked by vaishnaviibhandari, 8 months ago

pls answer this question
pls don't answer spam or wrong if you send you are a son of b#$@h​

Attachments:

Answers

Answered by hussainmohammed619
1

Answer:

 =  {x}^{a \times  \frac{1}{ab} }  \div  {x}^{b \times  \frac{1}{ab} }  \times  {x}^{b \times  \frac{1}{bc} }   \div  {x}^{c \times  \frac{1}{bc} }  \times  {x}^{c \times  \frac{1}{ca} }  \div  {x}^{a \times  \frac{1}{ca} }  \\  =  {x}^{ \frac{1}{b }  -  \frac{1}{a} +  \frac{1}{c}   -  \frac{1}{b}  +  \frac{1}{a}  -  \frac{1}{c} }   \\ =   {x}^{0 }  \\ =  1

Answered by ItzArchimedes
1

Solution :-

\longmapsto \sf\left(\dfrac{x^a}{x^b}\right)^{\frac{1}{ab}}\times\left(\dfrac{x^b}{x^c}\right)^{\frac{1}{bc}}\times\left(\dfrac{x^c}{x^a}\right)^{\frac{1}{ac}}

Simplifying using ,

\sf\left(\dfrac{a}{b}\right)^m = \dfrac{a^m}{b^m}

\\

\longmapsto\sf\dfrac{x^{1/b}}{x^{1/a}}\times\dfrac{x^{1/c}}{x^{1/b}}\times\dfrac{x^{1/a}}{x^{1/c}}

\sf\longmapsto \dfrac{\cancel{x^{1/b}}}{\cancel{x^{1/a}}}\times\dfrac{\cancel{x^{1/c}}}{\cancel{x^{1/b}}}\times\dfrac{\cancel{x^{1/a}}}{\cancel{x^{1/c}}}

\longmapsto \sf\left(\dfrac{x^a}{x^b}\right)^{\frac{1}{ab}}\times\left(\dfrac{x^b}{x^c}\right)^{\frac{1}{bc}}\times\left(\dfrac{x^c}{x^a}\right)^{\frac{1}{ac}}=\underline{\boxed{\textbf{\textsf{1}}}}

\therefore\orange{\sf Hence ,\left(\dfrac{x^a}{x^b}\right)^{\frac{1}{ab}}\times\left(\dfrac{x^b}{x^c}\right)^{\frac{1}{bc}}\times\left(\dfrac{x^c}{x^a}\right)^{\frac{1}{ac}}}=\underline{\boxed{\textbf{\textsf{1}}}}

Similar questions