Math, asked by satyasmiley2006, 16 hours ago

pls answer this question with proper explanation
pls dont ignore
and pls dont spam​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

(iii)

We have,

x^2+xy-2y^2+4x-y+k=0

\implies\,x^2-2y^2+xy+4x-y+k=0

The given equation is in the form of

a\,x^2+b\,y^2+2\,hxy+2\,gx+2\,fy+c=0\,\,\,\,\,\,...(1)

where,

a=1,\,b=-2,\,h=\dfrac{1}{2},\,g=2,\,f=-\dfrac{1}{2},\,c=k

Equation (1) will represent a straight line, if,

\triangle=\left|\begin{array}{ccc}a&h&g\\h&b&f\\g&f&c\end{array}\right|=0

\implies\left|\begin{array}{ccc}1&\dfrac{1}{2}&2\\\\\dfrac{1}{2}&-2&-\dfrac{1}{2}\\\\2&-\dfrac{1}{2}&k\end{array}\right|=0

Taking 1/2 common form each row,

\implies\dfrac{1}{8}\left|\begin{array}{ccc}2&1&4\\1&-4&-1\\4&-1&2k\end{array}\right|=0

\implies\left|\begin{array}{ccc}2&1&4\\1&-4&-1\\4&-1&2k\end{array}\right|=0

\implies\,2\left|\begin{array}{cc}-4&-1\\-1&2k\end{array}\right|-1\left|\begin{array}{cc}1&-1\\4&2k\end{array}\right|+4\left|\begin{array}{cc}1&-4\\4&-1\end{array}\right|=0

\implies\,2(-8k-1)-1(2k+4)+4(-1+16)=0

\implies\,-16k-2-2k-4-4+64=0

\implies\,-18k+54=0

\implies\,18k=54\\\implies\,k=3

Similar questions