Pls answer this trigonometry equation.
Attachments:
Answers
Answered by
2
Answer:
Step-by-step explanation:
Given that sinθ+cosθ=x
(sinθ+cosθ)2=x2
sin2θ+cos2θ+2sinθcosθ=x2
1+2sinθcosθ=x2
sinθcosθ=(x2−1)/2 .........(1)
∴sin6θ+cos6θ
=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)((sin2θ)2+(cos2θ)2−sin2θcos2θ)
=(1)((sin2θ)2+(cos2θ)2+2sin2θcos2θ−3sin2θcos2θ)
=(sin2θ+cos2θ)2−3sin2θcos2θ
=(1)2−3(sinθcosθ)2
=1−3(x2−1/2)2(from (1), setting sinθcosθ=(x2−1)/2)
=1−{3(x2−1/2)²/4}
=4−3(x2−1)²/4
Proved.
Similar questions
Math,
6 months ago
Political Science,
6 months ago
English,
6 months ago
Biology,
1 year ago
Math,
1 year ago
Political Science,
1 year ago