pls answer this urgently
Attachments:
Answers
Answered by
1
Hope it helps :)
Ans. is in the attachment
Attachments:
Answered by
0
GIVEN:
sinθ + cosθ // sinθ - cosθ + sinθ - cosθ // sinθ + cosθ
TO PROVE:
2 // 2sin^2 θ - 1
PROOF:
sinθ + cosθ // sinθ - cosθ + sinθ - cosθ // sinθ + cosθ
{// ⇒ whole divide }
(sinθ + cosθ)^2 + (sinθ - cosθ)^2 // sin^2 θ - cos^2 θ {^2 ⇒ square}
2 (sinθ + cosθ)^2 // sin^2 θ - cos^2 θ
WE KNOW THAT,
(sin^2 θ + cos^2 θ = 1 & cos^2 θ = 1 - sin^2 θ
SUBSTITUTING THESE WE GET,
2 // sin^2 θ - (1 - sin^2 θ)
2 // 2sin^2 θ - 1
HENCE PROVED ^_^
Similar questions