Math, asked by taseen47, 11 months ago

pls answer
will choose brainliest​

Attachments:

Answers

Answered by StarGazer001
13

Answer:-

[substitute a=1]

 \mathsf{ {1}^{3}  - 4(1)b + 4 = 5}

 \mathsf{ 1  - 4b + 4 = 5}

 \mathsf{ 5- 4b  = 5}

 \mathsf{5 - 5 = 4b}

 \mathsf{4b = 0}

 \mathsf{b =  \frac{0}{4} }

 \mathsf{b = 0}

Therefore value of b=0.

Answered by Anonymous
26

 \large \sf \underline{ \underline{ \: Given : \:  \:  } }

 \star(a)³ - 4ab + 4 = 5 and a = 1

\large \sf \underline{ \underline{ \: To \:  find :\:  \:  } }

 \starValue of b

\large \sf \underline{ \underline{  \:  Solution :\:  \:  } }

 \to \sf  {(a)}^{3}  - 4ab + 4 = 5

Substitute the value of a = 1 in given equation , we obtain

 \sf \implies {(1)}^{3}  - 4(1)(b) + 4 = 5 \\  \\\sf \implies 1 - 4b + 4 = 5 \\  \\\sf \implies 5 - 4b = 5 \\  \\\sf \implies  - 4b = 0 \\  \\\sf \implies b =  -  \frac{0}{4}  \\  \\ \sf \implies b = 0

Hence , the required value of b is 0

Similar questions