Math, asked by suddusuguna, 9 months ago

pls answer with full working and clear visibility

Attachments:

Answers

Answered by Anonymous
9

Your Answer:

\tt In \ \ \triangle BDE

BD = DE

So,

\tt \angle{DBE} = \angle{DEB} ( \because equal \ \ sides \ \ subtends \ \ equal \ \ angles)

So,

Using Angle sum property in triangle BDE

\tt \angle BDE + \angle DBE + \angle DEB = 180^o \\\\ \tt \Rightarrow 2\angle DEB + 110^o = 180^o \\\\ \tt \Rightarrow 2\angle DEB = 70^o \\\\ \tt \Rightarrow \angle DEB = \dfrac{70}{2} \\\\ \tt \Rightarrow \angle DEB = 35^o

\tt In \ \ \triangle{D E F}

DE = EF

So,

\tt \angle EFD = \angle EDF \ \ (\because equal \ \ sides \ \ subtends \ \ equal \ \ angles )

And

\tt \angle EDF = 180 - 110 (\because linear \ \ pair) \\\\ \tt \Rightarrow \angle EDF = 70^o = \angle EFD

Using Angle sum property in triangle DEF

\tt 70^o+70^o + \angle {D E F} = 180^o \\\\ \tt \Rightarrow 140^o +\angle {D E F} = 180^o \\\\ \tt \Rightarrow \angle D E F = 40^o

We have also

\tt \angle BEF = \angle D E F + \angle BED \\\\ \tt \Rightarrow \angle BEF = 40^o + 35^o  \\\\ \tt \Rightarrow  \angle BEF = 75^o

And

\tt \angle ABE = \angle BEF ( \because alt. int angles) \\\\ \tt \Rightarrow\angle ABE = 75^o

So,

\tt \star \angle BED = 35^o\\\\ \tt \star \angle D E F = 40^o \\\\ \tt \star \angle ABE = 75^o

Answered by kavyamahato14
3

Answer:

HOPE IT WILL HELP U ☺️.

PLZZ MARK THE ANSWER AS BRAINLIST ......

Attachments:
Similar questions