Math, asked by ndsharma2199, 9 months ago

pls answercit fast fast pls fast ​

Attachments:

Answers

Answered by shadowsabers03
6

We know successive multiples of 9 differ by 9, i.e. they have a common difference of 9.

Let the three consecutive multiples of 9 be \displaystyle\sf{x-9,\ x} and \displaystyle\sf {x+9.}

Sum of these three multiples is 999.

\displaystyle\longrightarrow\sf{(x-9)+x+(x+9)=999}

\displaystyle\longrightarrow\sf{x-9+x+x+9=999}

\displaystyle\longrightarrow\sf{3x=999}

\displaystyle\longrightarrow\sf{x=\dfrac {999}{3}}

\displaystyle\longrightarrow\sf {\underline {\underline {x=333}}}

\displaystyle\longrightarrow\sf {\underline {\underline {x-9=324}}}

\displaystyle\longrightarrow\sf {\underline {\underline {x+9=342}}}

Hence the three multiples are 324, 333 and 342.

  • 324 = 9 × 36

  • 333 = 9 × 37

  • 342 = 9 × 38

  • 324 + 333 + 342 = 999
Answered by Ataraxia
2

\rm Let \ us \ take \ three \ consecutive \ multiples  \ of \ nine \ as \ \bf{x} \ , \ \bf{(x+9)} \  \rm and \ \bf{(x+18)}\ .\\\\\rm \longrightarrow x+(x+9)+(x+18)=999\\\\\rm\longrightarrow 3x+27=999\\\\\rm\longrightarrow 3x=972\\\\\rm\longrightarrow\underline{\bf x=324}

\rm x+9=324+9=333\\\\\rm x+18 = 324+18=342

The consecutive multiples of 9 are 324 , 333 and 342 .

Similar questions
Science, 9 months ago