Math, asked by shanth95, 1 month ago

pls anyone tell me the important questions of the relations and functions chapter with all definations pls help me freinds.​

Answers

Answered by gyaneshwarsingh654
0

Answer:

Narendra modi is a current Prime Minster of India

Answered by sahithisidd
1

Answer:

Q.1:  Show that the Signum Function f: R → R, given by

f(x)=⎧⎩⎨⎪⎪⎪⎪⎪⎪10−1for x>0for x=0 is neither one−one nor ontofor x<0

Solution:

Check for one to one function:

For example:

f(0) = 0

f(-1) = -1

f(1) = 1

f(2) = 1

f(3) = 1

Since, for the different elements say f(1), f(2) and f(3), it shows the same image, then the function is not one to one function.

Check for Onto Function:

For the function,f: R →R

f(x)=⎧⎩⎨⎪⎪10−1for x>0for x=0for x<0

In this case, the value of f(x) is defined only if x is 1, 0, -1

For any other real numbers(for example y = 2, y = 100) there is no corresponding element x.

Thus, the function “f” is not onto function.

Hence, the given function “f” is neither one-one nor onto.

Q.2: If f: R → R is defined by f(x) = x2 − 3x + 2, find f(f(x)).

Solution:

Given function:

f(x) = x2 − 3x + 2.

To find f(f(x))

f(f(x)) = f(x)2 − 3f(x) + 2.

= (x2 – 3x + 2)2 – 3(x2 – 3x + 2) + 2

By using the formula (a-b+c)2 = a2+ b2+ c2-2ab +2ac-2ab, we get

= (x2)2 + (3x)2 + 22– 2x2 (3x) + 2x2(2) – 2x2(3x) – 3(x2 – 3x + 2) + 2

Now, substitute the values

= x4 + 9x2 + 4 – 6x3 – 12x + 4x2 – 3x2 + 9x – 6 + 2

= x4 – 6x3 + 9x2 + 4x2 – 3x2 – 12x + 9x – 6 + 2 + 4

Simplify the expression, we get,

f(f(x)) = x4 – 6x3 + 10x2 – 3x

Q.3: Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Find the identity element for * on A, if any.

Solution:

Check the binary operation * is commutative :

We know that, * is commutative if (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ R

L.H.S =(a, b) * (c, d)

=(a + c, b + d)

R. H. S = (c, d) * (a, b)

=(a + c, b + d)

Hence, L.H.S = R. H. S

Since (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ R

* is commutative (a, b) * (c, d) = (a + c, b + d)

Check the binary operation * is associative :

We know that * is associative if (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) ∀ a, b, c, d, x, y ∈ R

L.H.S =  (a, b) * ( (c, d) * (x, y) ) =  (a+c+x, b+d+y)

R.H.S =  ((a, b) * (c, d)) * (x, y) = (a+c+x, b+d+y)

Thus, L.H.S = R.H.S

Since (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) ∀ a, b, c, d, x, y ∈ R

Thus, the binary operation * is associative

Checking for Identity Element:

e is identity of * if (a, b) * e = e * (a, b) = (a, b)

where e = (x, y)

Thus, (a, b) * (x, y) = (x, y) * (a, b) = (a, b) (a + x, b + y)

= (x + a , b + y) = (a, b)

Now, (a + x, b + y) = (a, b)

Now comparing these, we get:

a+x = a

x = a -a = 0

Next compare: b +y = b

y = b-b = 0

Since A = N x N, where x and y are the natural numbers. But in this case, x and y is not a natural number. Thus, the identity element does not exist.

Therefore, the operation * does not have any identity element.

Q.4: Let f : N → Y be a function defined as f (x) = 4x + 3, where, Y = {y ∈ N: y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

Solution:

Checking for Inverse:

f(x) = 4x + 3

Let f(x) = y

y = 4x + 3

y – 3 = 4x

4x = y – 3

x = ( − 3)/4

Let g(y) = ( − 3)/4

where g: Y → N

Now find gof:

gof= g(f(x))

= g(4x + 3) = [(4 + 3) − 3]/4

= [4 + 3 − 3]/4

=4x/4

= x = IN

Now find fog:

fog= f(g(y))

= f [( − 3)/4]

=4[( − 3)/4] +3

= y – 3 + 3

= y + 0

= y = Iy

Thus, gof = INand fog = Iy,

Hence, f is invertible

Also, the Inverse of f = g(y) = [ – 3]/ 4

Q. 5: Let A = R {3} and B = R – {1}. Consider the function f: A →B defined by f (x) = (x- 2)/(x -3). Is f one-one and onto? Justify your answer.

Solution:

Given function:

f (x) = (x- 2)/(x -3)

Checking for one-one function:

f (x1) = (x1– 2)/ (x1– 3)

f (x2) = (x2-2)/ (x2-3)

Putting f (x1) = f (x2)

(x1-2)/(x1-3)= (x2-2 )/(x2 -3)

(x1-2) (x2– 3) = (x1– 3) (x2-2)

x1 (x2– 3)- 2 (x2 -3) = x1 (x2– 2) – 3 (x2– 2)

HOPE IT HELPS YOU PLS MARK ME AS BRAINLIEST

Similar questions