Math, asked by Ameya09, 3 months ago

Pls armies help me with this​

Attachments:

Answers

Answered by Anonymous
1

Answer :

The value of \sf{x-\frac{1}{x} \text { is } 5}

To find:

\sf \:x-\frac{1}{x}

Detailed Solution:

Given:

\sf\:x^{2}+\frac{1}{x^{2}}=27

We know that \sf\:(a-b)^{2}=a^{2}+b^{2}-2 a b

Substitute a = x, b = \sf\frac{1}{x}

\sf\implies\:(x-\frac{1}{x})^{2}

= x^{2}+\frac{1}{x^{2}}-2 \times x \times \frac{1}{x}

= x^{2}+\frac{1}{x^{2}}-2

=27-2 ( It is given that \sf\:x^{2}+\frac{1}{x^{2}}=27)

Thus ,

  • \sf(x-\frac{1}{x})^{2}

\sf(x-\frac{1}{x})^{2}=(5)^{2}

Take the square root of LHS and RHS ,

\sf{x-\frac{1}{x}=5}

Attachments:
Similar questions