pls awnser this question
Answers
Answer :
x € [1 3⁄5 , 3)
Solution :
- Given : -x/3 ≤ x/2 - 1⅓ < 1⁄6 , x € R
- To find : Solution set
We have ;
-x/3 ≤ x/2 - 1⅓ < 1⁄6 , x € R
Here ,
Two cases arises ;
1). -x/3 ≤ x/2 - 1⅓ , x € R
and
2) x/2 - 1⅓ < 1⁄6 , x € R
Case1 :
=> -x/3 ≤ x/2 - 1⅓ , x € R
=> -x/3 - x/2 ≤ -1⅓ , x € R
=> (-2x - 3x)/6 ≤ -4⁄3 , x € R
=> -5x/6 ≤ -4⁄3 , x € R
=> 5x/6 ≥ 4⁄3 , x € R
=> x ≥ (4⁄3)•(6⁄5) x € R
=> x ≥ 8⁄5 , x € R
=> x ≥ 1 3⁄5
=> x € [1 3⁄5 , ∞)
AND
Case2 :
=> x/2 - 1⅓ < 1⁄6, x € R
=> x/2 < 1⁄6 + 1⅓ , x € R
=> x/2 < 1⁄6 + 4⁄3 , x € R
=> x/2 < (1 + 8)/6 , x € R
=> x/2 < 9⁄6 , x € R
=> x/2 < 3⁄2 , x € R
=> x < (3⁄2)•2 , x € R
=> x < 3 , x € R
=> x € (-∞ , 3)
Here ,
The solution set of given inequation will be given as the intersection of the solutions found in both the cases .
Thus ,
=> x € [1 3⁄5 , ∞) and x € (-∞ , 3)
=> x € [1 3⁄5 , ∞) ∩ (-∞ , 3)
=> x € [1 3⁄5 , 3)
Hence ,
Solution set is [1 3⁄5 , 3) .
Answer:
Step-by-step explanation:
x-3 and the x it =awnser