Math, asked by Archeus, 6 months ago

pls clear my Doubt...


Q.) A triangle ABC is drawn to circumscribe a circle
of radius 4 cm such that the segments BD and
DC into which BC is divided by the point of
contact D are of lengths 8 cm and 6 cm
respectively (see Fig. 10.14). Find the sides AB
and AC​

Attachments:

Answers

Answered by EnchantedBoy
1

Answer:

AB=15cm,AC=13cm

Step-by-step explanation:

Let there is a circle having the center O touches the sides AB and AC of the triangle at point E and F respectively.

Let the length of the line segment AE is x

Now, in ΔABC,

CF=CD=6( tangents on the circle from point C)

BE=BD=6(tangents on the circle from point B)

AE=AF=x{tangents on the circle from point A)

Now,

AB=AE+EB

⇒AB=x+8=c

BC=BD+DC

⇒BC=8+6=16=a

CA=CF+FA

⇒CA=6+x=6

Now,

Semi-perimeter, s=\frac{(AB+BC+CA)}{2}

s=\frac{(x+8+14+6+x)}{2}

s=\frac{(2x+28)}{2}

⇒s=x+14

Area of the ΔABC=\sqrt{s(s-a)(s-b)(s-c)}

⇒\sqrt{(14+x)((14+x)-14)((14+x)-(6+x))((14+x)-(8+x))}

⇒\sqrt{(14+x)(x)(8)(6)}

⇒\sqrt{(14+x)(x)(2×4)(2×3)}

Area of the ΔABC=\sqrt[4]{3x(14+x)}

Area of ΔOBC=\frac{1}{2}×OD×BC

→\frac{1}{2}×4×14=28

Area of ΔOBC=\frac{1}{2}×OF×AC

→\frac{1}{2}×4×(6+x)

→12+2x

Area of ΔOAB=\frac{1}{2}×OE×AB

→\frac{1}{2}×4×(8+x)

→16=2x

Now, Area of the ΔABC=Area of ΔOBC+Area of ΔOBC+Area ofΔOAB

→\sqrt[4]{3x(14+x)}=28+12+2x+16+2x

→\sqrt[4]{3×(14+x)}=56+4x=4(14+x)

→\sqrt{3x(14+x)}=14+x

Squaring on both sides,

We get,

→3x(14+x)=(14+x)²

→3x=14+x

→3x-x=14

→2x=14

→\frac{14}{2}

→x=7

Hence,

AB=x+8

AB=7+8

\boxed{AB=15}

AC=6+x

AC=6+7

\boxed{AC=13}

So, the value of AB is 15cm

an the valuse of AC is 13cm

Hope it helps :-)

MARK ME BRAINLIST.....

Attachments:
Similar questions