Math, asked by Srilakshmi232020, 8 months ago

pls do answer.... I wl mark as brainliest..​

Attachments:

Answers

Answered by Anonymous
22

QUESTION:

Rationalize the denominator : { 5√2 / (7 - 3√2) } + { 6√2 / (7 + 3√2) }

 \\ \\

ANSWER:

  • (77√2 - 6) / 31

 \\ \\

GIVEN:

  • {5√2 / (7 - 3√2)} + {6√2 / (7 + 3√2)}

 \\ \\

TO RATIONALIZE:

  • {5√2 / (7 - 3√2)} + {6√2 / (7 + 3√2)}

 \\ \\

EXPLANATION:

Method 1:

 \sf \dashrightarrow \dfrac{ 5 \sqrt{2}}{ 7 - 3 \sqrt{2} } + \dfrac{ 6 \sqrt{2}}{7  +  3 \sqrt{2}} \\  \\

 \sf \dashrightarrow \dfrac{ 5 \sqrt{2}(7  +  3 \sqrt{2})  + 6 \sqrt{2}( 7    -   3 \sqrt{2})}{  {7}^{2}  - (3 \sqrt{2 }{)}^{2}  }  \\  \\

 \sf \dashrightarrow \dfrac{ 35 \sqrt{2} + 15 (2)  + 42 \sqrt{2}  -   18(2)}{ 49  - (9(2)) }  \\  \\

 \sf \dashrightarrow \dfrac{  77 \sqrt{2} + 30  - 36}{ 49  -18 }  \\  \\

 \sf \dashrightarrow \dfrac{ 77 \sqrt{2} - 6}{ 31 }  \\  \\

Method 2:

 \sf Let \ A =  \dfrac{ 5 \sqrt{2}}{ 7 - 3 \sqrt{2} }  \\  \\

 \sf Let\ B =  \dfrac{ 6 \sqrt{2}}{7  +  3 \sqrt{2}} \\  \\

Take A:

  • Rationalize the denominator.

 \sf\dashrightarrow A =  \dfrac{ 5 \sqrt{2}}{ 7 - 3 \sqrt{2} } \times  \dfrac{7  +  3 \sqrt{2}}{7  + 3 \sqrt{2}}\\  \\

 \sf\dashrightarrow A =  \dfrac{ 5 \sqrt{2}(7  +  3 \sqrt{2})}{ 7^{2}  - (3 \sqrt{2} {)}^{2}  }  \\  \\

 \sf\dashrightarrow A =  \dfrac{ 35 \sqrt{2}  +  15(2) }{49  - (9 (2)) }  \\  \\

 \sf \dashrightarrow A =  \dfrac{ 35 \sqrt{2}  + 30}{49  - 18 }  \\  \\

 \sf \dashrightarrow A =  \dfrac{ 35 \sqrt{2}  + 30}{31 }  \\  \\

Take B:

  • Rationalize the denominator.

 \sf\dashrightarrow B =  \dfrac{ 6 \sqrt{2}}{ 7  + 3 \sqrt{2} } \times  \dfrac{7   -  3 \sqrt{2}}{7  -  3 \sqrt{2}}\\  \\

 \sf\dashrightarrow B=  \dfrac{ 6 \sqrt{2}(7  -   3 \sqrt{2})}{ 7^{2}  - (3 \sqrt{2} {)}^{2}  }  \\  \\

 \sf\dashrightarrow B=  \dfrac{ 42 \sqrt{2} -   18(2)}{49 - (9(2) )}  \\  \\

 \sf\dashrightarrow B=  \dfrac{ 42 \sqrt{2} - 36}{49 -18}  \\  \\

 \sf\dashrightarrow B=  \dfrac{ 42 \sqrt{2} - 36}{31}  \\  \\

 \textbf{Add A and B} \\  \\

 \sf\dashrightarrow A + B= \dfrac{ 35 \sqrt{2}  + 30}{31 } +  \dfrac{ 42 \sqrt{2} - 36}{31}  \\  \\

 \sf\dashrightarrow A + B= \dfrac{ 77 \sqrt{2}   - 6}{31 } \\  \\

\boxed{\pink{\large{\bold{ \dfrac{ 5 \sqrt{2}}{ 7 - 3 \sqrt{2} } + \dfrac{ 6 \sqrt{2}}{7  +  3 \sqrt{2}} = \dfrac{ 77 \sqrt{2}   - 6}{31 }}}}} \\  \\

Answered by chavi7749
22

Answer:

answer \: is \:  \frac{ \sqrt[77]{2}  - 6}{31}

Attachments:
Similar questions