Math, asked by ahsanatminshin, 9 months ago

Pls do it... only no.3

Attachments:

Answers

Answered by abhi569
2

Answer:

sin²θ + cosec²θ = 1

Step-by-step explanation:

 ⇒ sinθ + cosecθ = √3

Square on both sides :

⇒ ( sinθ + cosecθ )^2 = ( √3 )^2

⇒ sin²θ + cosec²θ + 2( sinθ * cosecθ ) = 3

  sinθ*cosecθ = sinθ*(1/sinθ ) = 1

⇒ sin²θ + cosec²θ + 2(1) = 3

⇒ sin²θ + cosec²θ = 3 - 2

⇒ sin²θ + cosec²θ = 1

    Hence proved.

Answered by Anonymous
3

Given :

 \sf \star \:  \: Sin( \theta) + Cosec( \theta) =  \sqrt{3}

To prove :

 \sf  \star \:  \: {Sin}^{2}  ( \theta) +  {Cosec}^{2} ( \theta) = 1

Proof :

LHS :

  \Rightarrow \sf Sin( \theta) + Cosec( \theta) =  \sqrt{3}  \\  \\ \:  \:  \:  \:  \sf Squaring \:   both  \: sides \:  , \:  we  \: get  \\  \\ \Rightarrow \sf {(Sin ( \theta) + Cosec( \theta))}^{2}  =  { (\sqrt{3} )}^{2}  \\  \\ \Rightarrow \sf {Sin}^{2}  ( \theta) +  {Cosec}^{2} ( \theta) + 2(Sin ( \theta)   \times  Cosec( \theta) ) = 3 \\  \\ \Rightarrow \sf {Sin}^{2}  ( \theta) +  {Cosec}^{2} ( \theta)  + 2(1) = 3 \:  \:  \{  \because Sin ( \theta)   \times  Cosec( \theta) = 1\} \\  \\ \Rightarrow \sf {Sin}^{2}  ( \theta) +  {Cosec}^{2} ( \theta) = 1

 \large{ \star} \:  \:  \sf LHS = RHS

 \sf \underline{ \bold{ \: Hence \:  proved  \: }}

Similar questions