Math, asked by mansigupta13sep2005, 9 months ago

pls do the question with explanation.​

Attachments:

Answers

Answered by messi100002S
1

Step-by-step explanation:

SinQ/1+CosQ+1+CosQ/SinQ=4

(Sin^2Q)+ (1+CosQ)^2/(1+CosQ)(SinQ)=4

(Sin^2Q+Cos^2Q)+1+2CosQ/(1+CosQ)(SinQ)=4

2+2CosQ/(1+CosQ)(SinQ)=4

2(1+CosQ)/(1+CosQ)(SinQ)=4

2/SinQ=4

SinQ=8

Q=8/Sin

Answered by BrainlyPopularman
7

GIVEN :

   \\ \bf \implies \dfrac{ \sin( \phi) }{1 +  \cos( \phi) }  +  \dfrac{1 +  \cos( \phi) }{ \sin( \phi) } = 4  \\

TO FIND :

 \\ \implies \phi = ? \\

SOLUTION :

   \\ \bf \implies \dfrac{ \sin( \phi) }{1 +  \cos( \phi) }  +  \dfrac{1 +  \cos( \phi) }{ \sin( \phi) } = 4  \\

   \\ \bf \implies \dfrac{ \sin ^{2} ( \phi)  +  \{1 +  \cos( \phi) \}^{2} }{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

   \\ \bf \implies \dfrac{ \sin ^{2} ( \phi)  + 1 +  \cos^{2} ( \phi) + 2 \cos( \phi)  }{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

   \\ \bf \implies \dfrac{ \sin ^{2} ( \phi)  +  \cos^{2} ( \phi)  + 1+ 2 \cos( \phi)  }{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

 \\ \bf \implies \dfrac{1+ 1+ 2 \cos( \phi)  }{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

 \\ \bf \implies \dfrac{2+ 2 \cos( \phi)  }{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

 \\ \bf \implies \dfrac{2 \{1+  \cos( \phi) \}}{ \{\sin( \phi) \}\{1 +  \cos( \phi) \}}= 4  \\

 \\ \bf \implies \dfrac{2}{ \sin( \phi) }= 4  \\

 \\ \bf \implies \sin( \phi) =   \dfrac{2}{4}\\

 \\ \bf \implies \sin( \phi) =   \dfrac{1}{2}\\

 \\ \bf \implies \sin( \phi) =   \sin \left(\dfrac{\pi}{6} \right)\\

 \\ \bf \implies \large{ \boxed{ \bf \phi =\dfrac{\pi}{6}}}\\

Similar questions