Math, asked by Sunagaeshika, 11 months ago

Pls do this fast... pls pls pls

Attachments:

Answers

Answered by Anonymous
18

SOLUTION

The perpendicular distance from the origin to the line

x \: cos \alpha  - y \: sin \alpha  = k \: cos2 \ \alpha  \\  =  > p =  \frac{k \: cos \: 2 \theta}{ \sqrt{cos {}^{2}  \alpha + sin {}^{2} \alpha  } }  = k \: cos \: 2 \alpha

Now

x \: sec  \: \alpha  + y \: cosec \:  \alpha  = k \\  =  >  \frac{x}{cos \:  \alpha }  +  \frac{y}{sin \:  \alpha } = k \\   \\  =  > xsin \alpha  + ycos \alpha   = ksin \alpha cos \alpha  \\  =  > xsin \: \alpha  + y \: cos \:  \alpha  =  \frac{k}{2} sin2 \:  \alpha

The perpendicular distance q from the origin to the line...(2)

q =  \frac{ \frac{k}{2} sin \: 2  \alpha }{ \sqrt{ {sin}^{2} \alpha  +  {cos}^{2}  \alpha  } }  =  \frac{k}{2} sin \: 2 \alpha  \\  =  >  {p}^{2}  + 4q {}^{2}  = k {}^{2} cos {}^{2} 2 \alpha  + 4( \frac{k}{2}sin \: 2 \alpha ) {}^{2}   \\  =  >    {k}^{2} cos {}^{2} 2 \alpha  + 4 \times  \frac{k {}^{2} }{4} sin {}^{2} 2 \alpha  \\  =  >  {k}^{2} ( {cos}^{2} 2 \alpha  +  {sin}^{2} 2 \alpha ) =  {k}^{2}  \\  \\  \\  =  > hence \:  {p}^{2}  + 4 {q}^{2}  =  {k}^{2}

hope it helps ☺️

Answered by rishu6845
3

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions