Math, asked by VickyskYy, 6 months ago

pls evaluate this limit​

Attachments:

Answers

Answered by BrainlyPopularman
10

GIVEN :

 \\ \implies \bf \lim_{x \to0} \:  \dfrac{ {(x + 1)}^{5} - 1}{x} \\

TO FIND :

• Value of limit = ?

SOLUTION :

• Let –

 \\ \implies \bf P = \lim_{x \to0} \:  \dfrac{ {(x + 1)}^{5} - 1}{x} \\

• Now put the limit –

 \\ \implies \bf P = \dfrac{ {(0+ 1)}^{5} - 1}{0} \\

 \\ \implies \bf P = \dfrac{ {(1)}^{5} - 1}{0} \\

 \\ \implies \bf P = \dfrac{1 - 1}{0} \\

 \\ \implies \bf P = \dfrac{0}{0} \\

• It's an undefined form. Let use L'HOSPITAL rule –

 \\ \implies \bf P = \lim_{x \to0} \:  \dfrac{ {5(x + 1)}^{4} - 1}{1} \\

• Now put the limit –

 \\ \implies \bf P = \dfrac{ {5(0 + 1)}^{4} - 1}{1} \\

 \\ \implies \bf P = \dfrac{ {5(1)}^{4} - 1}{1} \\

 \\ \implies \bf P = \dfrac{5- 1}{1} \\

 \\ \implies \bf P = \dfrac{4}{1} \\

 \\ \implies \large{ \boxed{ \bf P =4}}\\

• Hence , The value of limit –

 \\ \implies \large { \boxed{\bf \lim_{x \to0} \:  \dfrac{ {(x + 1)}^{5} - 1}{x} = 4}}\\

Similar questions