Physics, asked by Anonymous, 10 months ago



pls explain clearly​

Attachments:

Answers

Answered by Atαrαh
3

pls refer the attachment

Attachments:
Answered by Anonymous
49

Answer:

 \boxed{(2) \: \frac{(3 \alpha + 2 \beta L)L}{3(2 \alpha +  \beta L)}}

Given:

 Linear \: mass \: density \: (\lambda) = \alpha + \beta x

Explanation:

 \setlength{\unitlength}{1cm}\thicklines\begin{picture}(10,6) \put(2,2.2){\line(1,0){8}}\put(2,2.2){\line(0,1){0.2}}\put(2,2.4){\line(1,0){8}} \put(10,2.2){\line(0,1){0.2}}\put(5,2.2){\line(0,1){0.2}}\put(5.2,2.2){\line(0,1){0.2}}\put(4.9,2.5){dx}\put(5.5,1){\vector(-1,0){3.5}}\put(5.6,1){L}\put(6,1){\vector(1,0){4}}\put(1,2.2){\vector(0,1){2}} \put(1,4.5){y}}\put(2,1.7){\vector(1,0){6}}\put(8.5,1.7){x}\end{picture}

Consider a small element of length dx having small mass dm.

dm  =  \lambda dx \\   \: \:  \:  \:  \:  \:  \:  \:  \:   =  (\alpha +  \beta x)dx

Position \:  of \:  center \:  of  \: mass,   \\ x_{cm} =  \frac{ \int\ {x} \, dm }{ \int\ \,dm }  \\  \\   \:  \:  \:   \:  \:  \:  \:  \:  \:  =  \frac{\int\limits^L_0 {x( \alpha +  \beta x)} \, dx }{\int\limits^L_0 {( \alpha +  \beta x)} \, dx }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{\int\limits^L_0 { \alpha x } \, dx  + \int\limits^L_0 { \beta  {x}^{2}  } \, dx }{\int\limits^L_0 { \alpha  } \, dx +  \int\limits^L_0 { \beta x } \, dx }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{( \frac{ \alpha  {L}^{2}  }{2} +  \frac{ \beta  {L}^{3} }{3}  )}{(\alpha  L +  \frac{ \beta  {L}^{2} }{2}  )}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{{L}^{ \cancel{2}} ( \frac{ \alpha}{2}  +  \frac{ \beta L}{3}) }{ \cancel{L}( \alpha  +  \frac{ \beta L}{2} )}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{L ( \frac{ \alpha}{2}  +  \frac{ \beta L}{3}) }{ ( \alpha  +  \frac{ \beta L}{2} )} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{L (\frac{3 \alpha + 2 \beta L}{6} )}{ (\frac{2 \alpha +  \beta L}{2} )}  \\  \\ x_{cm} =   \frac{L(3 \alpha + 2 \beta L)}{3(2 \alpha +  \beta L)}


EliteSoul: Great!
Anonymous: ^_^
Similar questions