Math, asked by dennaciji, 1 month ago

pls explain the answer... good answers will be marked as brainiest☆
4th question pls■​

Attachments:

Answers

Answered by ImperialGladiator
75

Answer:

 \sf =  \dfrac{4 \sqrt{6} - 18 - 2 \sqrt{10}  + 3 \sqrt{15}  }{- 19}

Explanation:

Given fraction,

 \sf =  \dfrac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}  + 3 \sqrt{3} }

We need to rationlise the denominator.

 \sf =  \dfrac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}  + 3 \sqrt{3} }  \times   \dfrac{2 \sqrt{2}  - 3 \sqrt{3} }{2 \sqrt{2} - 3 \sqrt{3}  }

 \sf =  \dfrac{(2 \sqrt{3}  -  \sqrt{5})(2 \sqrt{2}  - 3 \sqrt{3}) }{(2 \sqrt{2}  + 3 \sqrt{3})(2 \sqrt{2} - 3 \sqrt{3}) }

 \sf =   \dfrac{2 \sqrt{3}(2 \sqrt{2}  - 3 \sqrt{3}) -  \sqrt{5}(2 \sqrt{2}  - 3 \sqrt{3})  }{(2\sqrt{2})^2 - (3\sqrt{3})^2}

 \sf =  \dfrac{4 \sqrt{6} - 18 - 2 \sqrt{10}  + 3 \sqrt{15} }{8 - 27}

 \sf =  \dfrac{4 \sqrt{6} - 18 - 2 \sqrt{10}  + 3 \sqrt{15}  }{- 19}

__________________________

Note:

Whenever we rationlise any rational number we need to multiply the number by its conjugate. Conjugate is formed by changing the sign between two terms in a binomial.

Answered by adityahero922
1

Step-by-step explanation:

hivbbbbb have chgv hkhxfnbcb

Similar questions