Math, asked by gangobangupbjhf8, 1 year ago

pls fast and no spam ty

Attachments:

Answers

Answered by Brainly100
1

TO PROVE :-

 \frac{ \sin \theta - 2 { \sin }^{3} \theta }{2 { \cos }^{3} -  \cos \theta }  =  \tan \theta

PROOF :-

LHS=

 \frac{ \sin \theta - 2 { \sin }^{3} \theta }{2 { \cos }^{3} -  \cos \theta }   \\  \\  \\  =  \frac{ \sin \theta(1 - 2 { \sin }^{2} \theta)}{ \cos \theta(2 { \cos}^{2} \theta - 1 )} \\  \\  \\  =  \frac{ \sin \theta(1 - 2 { \sin }^{2} \theta)}{ \cos \theta(2  - 2 { \sin }^{2}  \theta - 1 )}   \\  \\  \\  =  \frac{ \sin \theta(1 - 2 { \sin }^{2} \theta)}{ \cos \theta(1  - 2 { \sin }^{2}  \theta )}  \\  \\  \\  =  \frac{ \sin \theta }{ \cos \theta}  \\  \\  =  \boxed{ \tan \theta }

= RHS

IDENTITY USED :-

 \frac{ \sin \theta }{ \cos \theta} = tan \theta  \\  \\  \\  { \sin \theta}^{2}  +  { \cos \theta}^{2}  = 1

Similar questions