Math, asked by siddhesh69023, 11 months ago

pls find answer. ........ prove that sec^6x-tan^6x=1+3tan^2x+×tan^2x​

Attachments:

Answers

Answered by rishu6845
1

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by ihrishi
1

Step-by-step explanation:

 {sec}^{6} x -  {tan}^{6} x = 1 + 3 {sec}^{2} x {sec}^{2} x \\ LHS =  {sec}^{6} x -  {tan}^{6} x \\  =  ({sec}^{2} ) ^ {3} x -  ({tan}^{2})^{3}  x \\  = ({sec}^{2} x - {tan}^{2}x) ^{3}   +  3 {sec}^{2} x   \: {tan}^{2} x \: ({sec}^{2} x - {tan}^{2}x) \\  = (1) ^{3}  +  3 {sec}^{2} x  \:{tan}^{2} x (1) \\  = 1 +  3{sec}^{2}x \: {tan}^{2} x    \\  = \: RHS  \\Thus  \: proved  \\  \\  formula \: used :  \\  {x}^{3}  -  {y}^{3}  = (x - y) ^{3}  + 3xy(x - y) \\

Similar questions
English, 11 months ago