Math, asked by arpan1234, 8 months ago

Pls find the question below in the attachment.

Attachments:

Answers

Answered by amitkumar44481
24

QuestioN :

If Sin A = 3/5, 0 < A < π/2 and Cos B = - 12 /13 , π < B < 3π/2 l, then find the following l.

( i ) Sin( A - B )

( ii ) Cos( A + B )

( iii ) tan( A - B )

AnsWer :

( i ) Sin( A - B ) = - 16/65.

( ii ) Cos( A + B ) = - 33/65.

( iii ) tan( A - B ) = 16/63.

SolutioN :

Taking Sin A.

We know,

  • Sin² A + Cos² A = 1.

So, Let's Find the value of Cos A.

 \tt  \dagger \:  \:  \:  \:  \:  \fbox{  {sin}^{2} A + {Cos}^{2}  A = 1.}

 \tt  :  \implies   {Cos}^{2}  A = 1 -  {sin}^{2} A

 \tt  :  \implies   {Cos}A =  \sqrt{ 1 -  {sin}^{2} A}

 \tt  :  \implies   Cos A = \sqrt{  1 -   { \bigg(\dfrac{3}{5}  \bigg) }^{2}  }

 \tt  :  \implies   Cos A = \sqrt{  1 -   {\dfrac{9}{25} }  }

 \tt  :  \implies   Cos A = \sqrt{   {\dfrac{ 25 - 9}{25} }  }

 \tt  :  \implies   Cos A = \sqrt{  {\dfrac{16}{25} }  }

 \tt  :  \implies   Cos A =  {\dfrac{4}{5} }

We have,

  • Cos B = - 12 / 13.

Let Find the value of Sin B.

 \tt  :  \implies   {sin}B =  \sqrt{ 1 -  {cos}^{2} B}

 \tt  :  \implies   {sin}B = -   \sqrt{ 1 -     {\bigg(- \dfrac{12}{13}  \bigg) }^{2} }

 \tt  :  \implies   {sin}B = -   \sqrt{ 1 -     \bigg(- \dfrac{144}{169}  \bigg) }

 \tt  :  \implies   {sin}B =   - \sqrt{\dfrac{169  -  144}{169} }

 \tt  :  \implies   {sin}B =   - \sqrt{\dfrac{169  - 144}{169} }

 \tt  :  \implies   {sin}B =   - \dfrac{5}{13}

\rule{120}3

Now,

Let's Find the value of

( i ) Sin( A - B )

We have Formula.

  • Sin( A - B ) = Sin A. Cos B - Cos A . Sin B.

 \tt  :  \implies  Sin( A - B ) = \dfrac{3}{5}  \times  \dfrac{12}{13}  -  \dfrac{4}{5}  \times   - \dfrac{5}{13}

 \tt  :  \implies  Sin( A - B ) =  - \dfrac{36}{65}    +  \dfrac{20}{65}

 \tt  :  \implies  Sin( A - B ) =  - \dfrac{16}{65}

\rule{120}3

( ii ) Cos( A - B )

We have Formula.

  • Cos( A - B ) = Cos A. Cos B - Sin A . Sin B.

 \tt  :  \implies  Cos( A  + B ) =   \dfrac{4}{5}  \times  -  \dfrac{12}{13}   -  \dfrac{3}{5}  \times   - \dfrac{5}{13}

 \tt  :  \implies  Cos( A  + B ) =   -  \dfrac{48}{65}    +  \dfrac{15}{65}

 \tt  :  \implies  Cos( A  + B ) =    - \dfrac{33}{65}

\rule{120}3

( iii ) Tan( A - B )

We have Formula.

  • tan A - tan B / 1 + tan A . tan B.

 \tt  :  \implies  tan A   =     \dfrac{ \frac{3}{5} }{ \frac{4}{5} }   =  \dfrac{3}{4}

 \tt  :  \implies  tan B  =     \dfrac{  - \frac{5}{13} }{  - \frac{12}{13} }   =  \dfrac{5}{12}

Now,

 \tt  :  \implies  tan (A + B)   =  \frac{ \frac{3}{4} -  \frac{5}{12}  }{1 +  \frac{3}{4} \times  \frac{5}{12}  }

 \tt  :  \implies  tan (A + B)   =  \dfrac{16}{63}

Note : More information attached above.

Attachments:
Similar questions