Math, asked by Gagan022, 9 months ago

pls find the roots by using sum and product of roots​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:zeroes=a^{2}+2}}}

\green{\tt{\therefore{Product\:of\:zeroes=a^{3}+1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }}  \\  \tt:\implies  {x}^{2}  - ( {a}^{2}  + 2)x + ( {a}^{3}  + 1) = 0 \\  \\  \red{\underline \bold{To \: Find :  }}  \\  \tt:  \implies Sum \: of \: roots = ?\\  \\  \tt:  \implies Product \: of \: roots =?

• According to given question :

 \tt \circ \: a = 1  \:  \:  \:  \:  \:   b =  - ( {a}^{2}  + 2)  \:  \:  \:  \:  \: c = ( {a}^{3} + 1)  \\  \\  \bold{For \: sum \: of \: roots : } \\  \tt:  \implies Sum \: of \: roots =  \frac{ - b}{a}  \\  \\   \tt:  \implies Sum \: of \: roots =  \frac{ - ( - ( {a}^{2}  + 2))}{1}  \\  \\  \green{\tt:  \implies Sum \: of \: roots =  {a}^{2}  + 2} \\  \\  \bold{For \: product \: of \: roots : } \\ \tt:  \implies Product \: of \: roots = \frac{c}{a}  \\  \\ \tt:  \implies Product \: of \: roots =  \frac{ {a}^{3}  + 1}{1}  \\  \\ \green{\tt:  \implies Product \: of \: roots = {a}^{3}  + 1}

Answered by sprao53413
2

Please see the attachment

Attachments:
Similar questions