Math, asked by student5582, 11 months ago

pls friends give the correct ans ​

Attachments:

Answers

Answered by Anonymous
2

Given \:  \: Question \:  \: is \\  \\  \tan( \alpha )  =  \frac{3}{4}  \\  \\ find \:  \:  \:  \frac{(1 -  \cos {}^{2} ( \alpha )) }{(1  +  \cos {}^{2} ( \alpha ) )}  \\  \\ Answer \:  \\  \\  \frac{(1 -  \cos {}^{2} ( \alpha ) )}{(1 +  \cos {}^{2} ( \alpha ) )}  =  \frac{ \sin {}^{2} ( \alpha ) }{2 +  \sin {}^{2} ( \alpha ) }  \\ (becoz \:  \:  \:  \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )  = 1) \\  \\  =  \frac{ \sin {}^{2} ( \alpha ) }{2 +  \sin {}^{2} ( \alpha ) }  \\  \\ given \:  \:   \:  \tan( \alpha )  =  \frac{3}{4}  \\  \tan {}^{2} ( \alpha )  =  \frac{9}{16}   \:  \:  \:  \:  =  >  \sin {}^{2} ( \alpha )  =  \frac{9}{25}  \\  \\  =  \frac{ \frac{9}{25} }{2 +  \frac{9}{25} }  \\  \\  =  \frac{9}{59}  \\  \\  \\ theretofore \:  \:  \:  \\  \frac{(1 -  \cos {}^{2} ( \alpha )) }{(1 +  \cos {}^{2} ( \alpha )) }  =  \frac{9}{59}

Similar questions