Pls frnds pls answer this is puzzling my mind ,i.e.,if sin theta=1.5,then cos theta=?????
?
Answers
Answered by
0
Find sinθsinθ if tanθ+secθ=1.5tanθ+secθ=1.5
tanθ+secθ=1.5tanθ+secθ=1.5
2tanθ+2secθ=32tanθ+2secθ=3
2secθ=3−2tanθ2secθ=3−2tanθ
4sec2θ=(3−2tanθ)24sec2θ=(3−2tanθ)2
4+4tan2θ=9−12tanθ+4tan2θ4+4tan2θ=9−12tanθ+4tan2θ
So I get
tanθ=512tanθ=512
Thus
sinθ=513sinθ=513
But If I do like this ,
sinθcosθ+1cosθ=32sinθcosθ+1cosθ=32
2sinθ+2=3cosθ2sinθ+2=3cosθ
(2sinθ+2)2=9cos2θ(2sinθ+2)2=9cos2θ
4sin2θ+8sinθ+4=9−9sin2θ4sin2θ+8sinθ+4=9−9sin2θ
13sin2θ+8sinθ−5=013sin2θ+8sinθ−5=0
Therefore I get two answers
sinθ=513,sinθ=−1
tanθ+secθ=1.5tanθ+secθ=1.5
2tanθ+2secθ=32tanθ+2secθ=3
2secθ=3−2tanθ2secθ=3−2tanθ
4sec2θ=(3−2tanθ)24sec2θ=(3−2tanθ)2
4+4tan2θ=9−12tanθ+4tan2θ4+4tan2θ=9−12tanθ+4tan2θ
So I get
tanθ=512tanθ=512
Thus
sinθ=513sinθ=513
But If I do like this ,
sinθcosθ+1cosθ=32sinθcosθ+1cosθ=32
2sinθ+2=3cosθ2sinθ+2=3cosθ
(2sinθ+2)2=9cos2θ(2sinθ+2)2=9cos2θ
4sin2θ+8sinθ+4=9−9sin2θ4sin2θ+8sinθ+4=9−9sin2θ
13sin2θ+8sinθ−5=013sin2θ+8sinθ−5=0
Therefore I get two answers
sinθ=513,sinθ=−1
Answered by
0
Answer:
Step-by-step explanation:
Sin ∅ = 1.5
= 15/10
Sin²∅ = 225/100 ( squaring both sides)
We know that,
Sin²∅ + cos²∅ = 1
225/100 + cos²∅ = 1
Cos²∅ = 1 - 225/100
Cos²∅ = 100 -225 /100
cos²∅ = - 125 /100
cos∅ = √125 /100 (taking sq. rt. on both sides)
Cos ∅ = 5√5 /100
Cos∅ = √5 /20
Therefore the value of cos∅ Is √5/20
Similar questions