Math, asked by Dhruvkundrai, 9 months ago

pls give a detailed solution for this ​

Attachments:

Answers

Answered by BrainlyTornado
6

QUESTION:

  \sf Cot(60^{\circ}+m) = \dfrac{1}{3\sqrt{3}} \ find \ Cot(60^{\circ} - m)

ANSWER:

\sf Cot(60^{\circ}  - m) = \dfrac{ - 2}{  \sqrt{3} }

GIVEN:

  \sf Cot(60^{\circ}+m) = \dfrac{1}{3\sqrt{3}}

TO FIND:

\sf Cot(60^{\circ} - m)

EXPLANATION:

\boxed{  \bold{\large{ \gray{Cot(x + y) = \dfrac{Cot \ x  \ Cot \ y - 1}{Cot \ x   + Cot \ y}}}}}

\sf Cot(60^{\circ}+m) = \dfrac{Cot \ 60^{\circ}  Cot \ m - 1}{Cot \ 60^{\circ}  +  Cot \ m}

Cot 60° = 1/√3

\sf Cot(60^{\circ}+m) = \dfrac{ \dfrac{Cot \ m}{ \sqrt{3} } - 1}{ \dfrac{1}{ \sqrt{3} }  +   Cot \ m}

\sf Cot(60^{\circ}+m) = \dfrac{\dfrac{Cot \ m -  \sqrt{3}}{ \sqrt{3}}}{ \dfrac{1 +  \sqrt{3} Cot \ m}{ \sqrt{3}}}

\sf Cot(60^{\circ}+m) = \dfrac{Cot \ m -  \sqrt{3}}{ 1 +  \sqrt{3} Cot \ m}

  \sf Cot(60^{\circ}+m) = \dfrac{1}{3\sqrt{3}}

  \sf \dfrac{1}{3\sqrt{3}}=\dfrac{Cot \ m -  \sqrt{3}}{ 1 +  \sqrt{3} Cot \ m}

\sf  { 1 +  \sqrt{3} Cot \ m} =(Cot \ m -  \sqrt{3})(3\sqrt{3})

\sf  { 1 + \sqrt{3} Cot \ m} =3\sqrt{3}Cot \ m -  9

\sf  10 =3\sqrt{3}Cot \ m  -  \sqrt{3} Cot \ m

\sf  10 =2\sqrt{3}Cot \ m

\sf  5 =\sqrt{3}Cot \ m

\sf  Cot \ m  =  \dfrac{5}{ \sqrt{3} }

\boxed{  \bold{\large{ \gray{Cot(x  -  y) = \dfrac{Cot \ x  \ Cot \ y  +  1}{Cot \ x    -  Cot \ y}}}}}

\sf Cot(60^{\circ}  -   m) = \dfrac{Cot \ 60^{\circ}  Cot \ m    +   1}{Cot \ 60^{\circ}     -    Cot \ m}

\sf Cot(60^{\circ}   -  m) = \dfrac{    \left(\dfrac{1}{ \sqrt{3} }  \times  \dfrac{5}{ \sqrt{3} } \right) +  1}{\left( \dfrac{1}{ \sqrt{3} }   - \dfrac{5}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}   -   m) = \dfrac{   \dfrac{5}{ 3}  +  1}{\left( \dfrac{ - 4}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}  - m) = \dfrac{   \dfrac{5  + 3}{ 3}}{\left( \dfrac{ - 4}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}  - m) = \dfrac{\dfrac{5  + 3}{  \sqrt{3} }}{ - 4}

\sf Cot(60^{\circ}  - m) = \dfrac{\dfrac{8}{  \sqrt{3} }}{ - 4}

\sf Cot(60^{\circ}  - m) = \dfrac{ - 2}{\sqrt{3} }

VERIFICATION:

\sf Cot(60^{\circ}  +  m) = \dfrac{Cot \ 60^{\circ}  Cot \ m   -   1}{Cot \ 60^{\circ}    +   Cot \ m}

\sf Cot(60^{\circ}  + m) = \dfrac{    \left(\dfrac{1}{ \sqrt{3} }  \times  \dfrac{5}{ \sqrt{3} } \right)- 1}{\left( \dfrac{1}{ \sqrt{3} }  +   \dfrac{5}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}  +  m) = \dfrac{   \dfrac{5}{ 3} - 1}{\left( \dfrac{6}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}  + m) = \dfrac{   \dfrac{5 - 3}{ 3}}{\left( \dfrac{6}{ \sqrt{3} } \right)}

\sf Cot(60^{\circ}  + m) = \dfrac{   \dfrac{2}{  \sqrt{3} }}{6}

\sf Cot(60^{\circ}  +  m) =    \dfrac{2}{ 6 \sqrt{3} }

\sf Cot(60^{\circ}  +  m) =    \dfrac{1}{ 3 \sqrt{3} }

HENCE VERIFIED.

Similar questions