Math, asked by Rakshit31052007, 1 month ago

Pls give all the answers of the above attachment....​

Attachments:

Answers

Answered by MagicalLove
196

Step-by-step explanation:

______________________

{ \huge{ \underline{ \boxed{ \textsf{ \textbf{Answer:-}}}}}}

------------------------------------------

6) Given :

  • Two Rational number are 5/7 and 9/11

To Find :

  • Three Rational number between 5/7 and 9/11

Solution :

First take LCM for 7 and 11

•°• LCM of 7 and 11 is 77

now,

  : \implies \sf \:  \frac{5}{7}  \:  \: and \:  \:  \frac{9}{11}  \\

For denominator 77 , we should multiply 7 by 11 and 11 by 7

  : \implies \sf \: \frac{5 \times 11}{7 \times 11}  \:  \: and \:  \:  \frac{9 \times 7}{11 \times 7}  \\

  : \implies \sf \: \frac{55}{77}  \:  \: and \:  \:  \frac{63}{77}  \\

 { \underline{ \boxed{  \sf{ \red{  Rational \:  \:  \: number \: between \:  \frac{5}{7}  \:  \: and \:  \:  \frac{9}{11}  \:  \: is \:  \:  \frac{56}{77}  \: , \frac{57}{77} , \:  \frac{58}{77} ...}}}}}

---------------------------------------------

7) To Find :

  • Rationalizing factors of ³√49

Solution :

 \bf \: 49 \:  \implies \:  \: we \:  \: can \:  \: write \:  \: as \:  {7}^{2}

 \boxed{ \pink  {\sf{49 =  {(7)}^{2} }}}

  • To get cube root , we need a product of 3 similar numbers .
  • But here we have two 7s, and we need one more 7 inside a cube root
  • So, we have to multiply ³√49 by ³√7

 \tt \implies \red{ \sqrt[3]{ {7}^{2} }  \times  \sqrt[3]{7}  =  {7}^{ \frac{2}{3} }  \times  {7}^{ \frac{1}{3} }  =  {7}^{ \frac{2}{3}  +  \frac{1}{3} }  =  {7}^{ \frac{3}{3} }  = 7} \\

•°• The rationalizing factors of ³√49 is ³7

-----------------------------------------------

8) To Find :

  • Express 4/√5-1 in Rational denominator

Solutions :

Rational denominator of √5-1 is √5+1

  :  \implies \sf \:  \frac{4}{ \sqrt{5} - 1 }  \\

 :  \implies \sf \:   \frac{4}{ \sqrt{5}  - 1}  \times  \frac{ \sqrt{5}  + 1}{ \sqrt{5} + 1 }  \\

 :  \implies \sf \:   \frac{4( \sqrt{5} - 1) }{ {( \sqrt{5}) }^{2}  -  {(1)}^{2} }  \\

 :  \implies \sf \:   \frac{4 \sqrt{5}  + 4}{25 - 1}  \\

 :  \implies \sf \:   \frac{4 \sqrt{5}  - 4}{24}  \\

 :  \implies \sf \:   \frac{ \cancel4 \sqrt{5}  - 4}{ \cancel{24} \:  \:  \:  \: 12 } \\

  {\underline{ \boxed{ : \implies {\sf {\purple{ \frac{ \sqrt{5}  + 4}{12}}}}}}}

Formula Used :

  • (a+b)(a-b) = a²-b²

---------------------------------------------

9)Question :

How many Rational number are there between two Rational number ?

Answer :

  • There are Infinity many Rational numbers are there between two Rational numbers

  • Eg : 5/10 and 6/10

-------------------------------------------

10) Given :

  • a = 1+√7

To Find :

  • Find the value of a in -6/a

Solution :

=> -6/a

=>-6/1+√7 *1-√7/1-√7

=>-6(1-√7)/(1)²-(√7)²

=>-6+6√7/1-7

=>-6+6√7/-6

=>6(-1+√7)/-6

=>-(-1+√7)

=>1-√7

  {\underline{ \boxed{ : \implies {\sf {\purple{ a = 1-\sqrt{7}}}}}}}

Formula Used :

  • (a+b)(a-b) = a²-b²

-------------------------------------------

______________________

\huge{\underline{\boxed{\sf{\green{@\: MagicalLove}}}}}


MяƖиνιѕιвʟє: Awesome !
mddilshad11ab: Nice
Answered by sanju2363
38

Step-by-step explanation:

Given :

Two Rational number are 5/7 and 9/11

To Find :

Three Rational number between 5/7 and 9/11

Solution :

First take LCM for 7 and 11

•°• LCM of 7 and 11 is 77

Similar questions