Math, asked by Rahul11105, 4 months ago


pls give answer with proper explanation​​

Attachments:

Answers

Answered by MisterIncredible
31

Question : -

If the mean of 28,34,41,23,45,18,21 is 'x' , then the value of \sf{ 2 - log_{x} 2 - log_{x} 3 - log_{x} 5 } is ....

ANSWER

Given : -

Mean of 28,34,41,23,45,18,21 is 'x'

Required to find : -

Value of \sf{ 2 - log_{x} 2 - log_{x} 3 - log_{x} 5 }

Solution : -

Given Observations are;

28,34,41,23,45,18,21

No. of observations = 7

Sum of the observation is

= 28 + 34 + 41 + 23 + 45 + 18 + 21

= 210

Now,

Mean = (sum of observations)/(no. of observations)

This implies;

Mean = (210)/(7)

Mean = 30

  • => x = 30

Now,

Required value to be evaluated is !!

\sf{ 2 - log_{x} 2 - log_{x} 3 - log_{x} 5 }

This implies;

 \sf 2 -   log_{x}(2)  -  log_{x}(3) -  log_{x}(5)   \\ \sf \: taking \:  -  \: common  \\  \\ \sf 2 -  \big \{   log_{x}(2) +  log_{x}(3)  +  log_{x}(5)   \big \} \\  \\  \sf  2 -  \{ log_{x}(2 \times 3 \times 5)  \} \\  \\  \sf 2 -  \{ log_{30}(30)  \} \\  \\ \sf 2 - 1 \\  \\ \sf \implies 1

Note : -

  • log a + log b = log (ab)
  • \sf{log_{a} a = 1 }

Therefore,

\underline{\boxed{\mapsto{\sf{\green{ 2 - log_{x} 2 - log_{x} 3 - log_{x} 5 = 1  }}}}}


amansharma264: Great
Answered by Anonymous
15

Given,

  • The Mean Of 28,34,41,23,45,18,21 is X.

To Find,

2 -  log_{x}(2)  -  log_{x}(3)  -  log_{x}(5)

Solution,

: \implies The  \:  \: Mean =  \frac{Sum \:  \:  of \:  \:  Total \:  \:  Observation}{Number  \:  \: of  \:  \: Total  \:  \: Observation}  \\  \\ : \implies x =  \frac{28 + 34 + 41 + 23 + 45 + 18 + 21}{7}  \\  \\ : \implies x =  \frac{210}{7}  \\  \\ : \implies  \color{red} \boxed{x = 30}

: \implies 2 -  log_{x}(2)  -  log_{x}(3)  -  log_{x}(5)  \\  \\ : \implies 2 - ( log_{30}(2)  +  log_{30}(3)  +  log_{x}(5) ) \\  \\ : \implies 2 - (  log_{30}(2 \times 3 \times 5) ) \\  \\ : \implies 2 - ( log_{30}(30) ) \\  \\ : \implies 2 - 1 \\  \\ : \implies 1

Required Answer,

1

Similar questions