Math, asked by subigsha2021, 1 month ago

pls give me a answer I'll mark u as brainleist​

Attachments:

Answers

Answered by TheGodWishperer
1

Answer:

1

Solution:

 \mathtt{  ({\frac{ {x}^{b} }{ {x}^{c} } )}^{b + c - a}  . ({\frac{ {x}^{c} }{ {x}^{a} } )}^{ c  + a - b} . ({\frac{ {x}^{a} }{ {x}^{b} } )}^{a + b - c}}

 \mathtt{using \: identity \: \:  \frac{ {x}^{a} }{  {x}^{b} }  =  {x}^{a - b} }

\mathtt{  ({{x}^{b - c}  )}^{b + c - a}  . ({{{x}^{c - a}) }}^{ c  + a - b} . ({{ {x}^{a - b} })}^{a + b - c}}

\mathtt{  {{x}  }^{(b - c)(b + c - a)}  . {{x}}^{(c - a)( c  + a - b)} . {x}^{(a - b)({a + b - c})}}

Now all bases are x hence we can add powers and take single base

\mathtt{  {{x}  }^{(b - c)(b + c - a) + (c - a)( c  + a - b) +(a - b)(a + b - c)}}

Simplifying powers

\mathtt{   {x}^{ {b}^{2}  -  {c}^{2} -ba + ac  + {c}^{2} -  {a}^{2}  - cb + ab +  {a}^{2} -  {b}^{2}   - ac + bc  }   }

\mathtt{   {x}^{0} }

\mathtt{   {x}^{0} = 1 }

Similar questions