Math, asked by sangitasingh61051, 1 month ago

pls give me answer I WL Mark you brainliest​

Attachments:

Answers

Answered by wardasehar79
1

Answer:

the coordinates of A are 0,-10

B are 4,0

please mark me as brainliest

Answered by GraceS
21

\sf\huge\bold{Answer:}

Given :

Line intersect x-axis at A

and y-axis at C.

Midpoint of line segment AC = B (-5,9)

To find :

Distance of A from O origin. i.e. OA.

Solution :

A will be of type (x, 0)

and C will be of type (0,y)

Mid point formula :

 \boxed{ \tt\red{ mid \: point =   \bigg(\frac{x_1 + x_2 }{2} , \frac{y_1 +y_2}{2} }} \bigg) \\

\tt x_1 = x coordinate of A = x

\tt x_2 = x coordinate of C = 0

\tt y_1 = y coordinate of A = 0

\tt y_2 = y coordinate of C = y

 \tt\ ( - 5,9) =  \bigg( \frac{x + 0}{2}, \frac{0 + y}{2}   \bigg) \\

 \tt\ ( - 5,9) =   \bigg(\frac{x}{2} , \frac{y}{2}  \bigg) \\

  • Comparing x and y axis on both sides, we get

 \tt\ :⟶ - 5 =  \frac{x}{2}     and \: \tt\ 9 =  \frac{y}{2} \\

 \tt\ :⟶ \: x =  - 5  \times 2,y = 9 \times 2

\tt\ :⟶ \: x =  - 10,y = 18

x = -10

y = 18

  • A (x, 0) = (-10,0)
  • C(0,y) = (0,18)

Distance formula :

 \boxed{\tt \red{d =  \sqrt{(x_2 - x_1) {}^{2}  + (y_2 - y_1) {}^{2} } } }

point A (-10,0) Origin O (0,0)

\tt x_1 = x coordinate of A = -10

\tt x_2 = x coordinate of O = 0

\tt y_1 = y coordinate of A = 0

\tt y_2 = y coordinate of C = 0

 \tt\ OA =  \sqrt{(0 - ( - 10)) {}^{2}  + (0 - 0) {}^{2} }

 \tt\ OA = \sqrt{(10) {}^{2} + (0) {}^{2}  }

 \tt\ OA = \sqrt{100 + 0}

 \tt\ OA = \sqrt{10 \times 10}

 \tt\ OA  = 10 \: units</p><p>

Distance of A from O origin :-

 \huge\tt \underline\purple{ 10 \: units} \\

Similar questions