Math, asked by swayamkanoje1969, 8 hours ago

pls give me detailed solution of this question​

Attachments:

Answers

Answered by TrustedAnswerer19
19

   \pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \:  \:  \: given \\  \\ \displaystyle \int \bf \: \frac{3ax}{ {b}^{2} +  {c}^{2}  {x}^{2}  }  \: dx \\  \\     \blue{{\boxed{\begin{array}{cc} \bf \: substitute \:  \:  \\  \bf \: u =  {b}^{2}  +  {c}^{2} {x}^{2} \\ \bf \implies \:  \frac{du}{dx}   =0+ 2 {c}^{2} x \\ \bf \implies \: dx =  \frac{1}{2 {c}^{2} x} du \: \end{array}}}} \\  \\  = \bf \frac{3a}{2 {c}^{2} }  \displaystyle \int \bf \:  \frac{1}{u}   \: du \\  \\  =  \bf \frac{3a}{2 {c}^{2} }  \times  \ln(u) + c\: \\  \\  =  \bf \:  \frac{3a}{2 {c}^{2} }  \times  \ln( {b}^{2}  +  {c}^{2}  {x}^{2} ) + c \end{array}}}}

Note :

 \bf \odot \: \displaystyle \int \bf \: \frac{1}{x}  \: dx =  \ln(x) + c

Similar questions