Math, asked by swayamkanoje1969, 6 hours ago

pls give me step by step explanation and solve correctly ​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = f( {sin}^{2}x)

and

\red{\rm :\longmapsto\:f'(x) = \dfrac{1 + x}{1 - x}}

Now,

\rm :\longmapsto\:y = f( {sin}^{2}x)

Let assume that

\red{\rm :\longmapsto\: {sin}^{2}x = z}

So,

\rm :\longmapsto\:y = f(z)

On Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}f(z)

\rm :\longmapsto\:\dfrac{dy}{dx} = f'(z)\dfrac{dz}{dx}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 + z}{1 - z}\dfrac{d}{dx} {sin}^{2} x

\red{\bigg \{ \because \:f'(x) =  \dfrac{1 + x}{1 - x}  \:  \:  \: and \: z \:  =  \:  {sin}^{2}x  \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 +  {sin}^{2} x}{1 -  {sin}^{2}x} \: \dfrac{d}{dx} {(sinx)}^{2}

We know,

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 +  {sin}^{2} x}{{cos}^{2}x} \:2 \: sinx \dfrac{d}{dx}sinx

We know,

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 +  {sin}^{2} x}{{cos}^{2}x} \:2 \: sinx  \: cosx

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1 +  {sin}^{2} x}{{cos}^{2}x}  \: sin2x

can be rewritten as

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{(1 +  {sin}^{2} x) \: sin2x}{{cos}^{2}x}  \:

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =   - \:  {cosec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}secx = secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx = -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

Answered by oOosnowflakeoOo
3

Answer:

give that,

y = f( \sin {}^{2} x)

and

f(x) =  \frac{1 + x}{1 + x}

now,

y = f (sin {}^{2} x)

let assume that

 \sin {}^{2} x = z

so,

y = f(z)

on differentiating both sides W. r. t. x, we get

 \frac{d}{dx}   y =  \frac{d}{dx} f(z)

 \frac{dy}{dx}  = f(z) \frac{dz}{dx}

 \frac{dy}{dx}  =  \frac{1 + z

Similar questions