Math, asked by kevinkaria1, 1 year ago

pls give solution #log #class 11 # mathematics # IIT-JEE​

Attachments:

Answers

Answered by Grimmjow
29

\mathsf{Given :\;60^a = 3}

\bigstar\;\;\textsf{We know that : \large\boxed{\mathsf{When\;b^y = x \implies \log_b(x) = y}}}

\mathsf{\implies a = \log_{60}(3)}

\mathsf{Given :\;60^b = 5}

\mathsf{\implies b = \log_{60}(5)}

\mathsf{Question\;is:\;12^{\dfrac{1 - a - b}{2(1 - b)}}}

\mathsf{\implies 12^{\dfrac{1 - (a + b)}{2(1 - b)}}}

Substituting the values of a and b, We get :

\mathsf{\implies 12^{\dfrac{1 - [\log_{60}(3) + \log_{60}(5)]}{2[1 - \log_{60}(5)]}}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{\log_b(x) + \log_b(y) = \log_b(x.y)}}}}

\mathsf{\implies 12^{\dfrac{1 - (\log_{60}(3\times 5)}{2[1 - \log_{60}(5)]}}}

\mathsf{\implies 12^{\dfrac{1 - \log_{60}(15)}{2[1 - \log_{60}(5)]}}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{\log_b(b) = 1}}}}

\implies \mathsf{1\;can\;be\;written\;as\;\log_{60}(60)}

\mathsf{\implies 12^{\dfrac{\log_{60}(60) - \log_{60}(15)}{2[\log_{60}(60) - \log_{60}(5)]}}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{\log_b(x) - \log_b(y) = \log_b\bigg(\dfrac{x}{y}\bigg)}}}}

\mathsf{\implies 12^{\dfrac{\log_{60}\bigg(\dfrac{60}{15}\bigg)}{2\log_{60}\bigg(\dfrac{60}{5}\bigg)}}}

\mathsf{\implies 12^{\dfrac{\log_{60}(4)}{2\log_{60}(12)}}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{\dfrac{\log_c(x)}{\log_c(y)} = log_y(x)}}}}

\mathsf{\implies 12^{\dfrac{\log_{12}(4)}{2}}}

\mathsf{\implies 12^{\dfrac{\log_{12}(2^2)}{2}}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{\log_b(x^y) = y.\log_b(x)}}}}

\mathsf{\implies 12^{\dfrac{2\log_{12}(2)}{2}}}

\mathsf{\implies 12^{\log_{12}(2)}}

\bigstar\;\;\textsf{We know that : \large{\boxed{\mathsf{b^{\log_b(x)} = x}}}}

\implies \large\boxed{\mathsf{12^{\log_{12}(2)} = 2}}

Similar questions