Math, asked by aayushtare777, 4 months ago

Pls give solution with steps​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: \alpha , { \alpha}^{2}, { \alpha }^{3}, { \alpha }^{4} \: are \: roots \: of \:  {x}^{5} - 1 = 0

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:(1 -  \alpha )(1 -  { \alpha }^{2})(1 -  { \alpha }^{3})(1 -  { \alpha }^{4}) = 5

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\underbrace{\boxed{ \tt{ \displaystyle\lim_{x \to a}\: \frac{ {x}^{n}  -  {a}^{n} }{x - a} =  {na}^{n - 1} }}}

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {x}^{5} - 1 = 0

By hit and trial, if we substitute x = 1, it satisfy the given equation.

So, x = 1 is root of equation.

And also, it is given that

\rm :\longmapsto\: \alpha , { \alpha}^{2}, { \alpha }^{3}, { \alpha }^{4} \: are \: roots \: of \:  {x}^{5} - 1 = 0

Since, highest degree of given Equation is 5. So, it has atmost 5 real roots.

So, it implies,

\rm :\longmapsto\: 1,\alpha , { \alpha}^{2}, { \alpha }^{3}, { \alpha }^{4} \: are \: roots \: of \:  {x}^{5} - 1 = 0

So,

\rm :\longmapsto\: {x}^{5} - 1 = (x - 1)(x -  \alpha)(x -  { \alpha }^{2})(x -  { \alpha }^{3})(x -  { \alpha }^{4})

So, it can be rewritten as

\rm :\longmapsto\: \dfrac{ {x}^{5}  - 1}{x - 1} = (x -  \alpha)(x -  { \alpha }^{2})(x -  { \alpha }^{3})(x -  { \alpha }^{4})

So,

\rm :\longmapsto\: \displaystyle\lim_{x \to 1}\dfrac{ {x}^{5}  - 1}{x - 1} =\displaystyle\lim_{x \to 1} (x -  \alpha)(x -  { \alpha }^{2})(x -  { \alpha }^{3})(x -  { \alpha }^{4})

\rm :\longmapsto\: 5 {(1)}^{5 - 1}  = (1 -  \alpha)(1 -  { \alpha }^{2})(1 -  { \alpha }^{3})(1 -  { \alpha }^{4})

\rm :\longmapsto\: 5 {(1)}^{4}  = (1 -  \alpha)(1 -  { \alpha }^{2})(1 -  { \alpha }^{3})(1 -  { \alpha }^{4})

\rm :\longmapsto\: (1 -  \alpha)(1 -  { \alpha }^{2})(1 -  { \alpha }^{3})(1 -  { \alpha }^{4}) = 5

Hence, Proved

Additional Information :-

\underbrace{\boxed{ \tt{\displaystyle\lim_{x \to 0} \: \frac{sinx}{x} = 1}}}

\underbrace{\boxed{ \tt{\displaystyle\lim_{x \to 0} \: \frac{tanx}{x} = 1}}}

\underbrace{\boxed{ \tt{\displaystyle\lim_{x \to 0} \: \frac{ {e}^{x}  - 1}{x} = 1}}}

\underbrace{\boxed{ \tt{\displaystyle\lim_{x \to 0} \: \frac{ log(1 + x) }{x} = 1}}}

\underbrace{\boxed{ \tt{\displaystyle\lim_{x \to 0} \: \frac{ {a}^{x}  - 1}{x} = loga}}}

Similar questions