Physics, asked by rohitgupta81, 11 months ago

PLS give the correct solution by checking the answer.​

Attachments:

Answers

Answered by Anonymous
3

\Huge\underline{\underline{\bf \red{Question\:18}:}}

\Large\underline{\underline{\sf Given:}}

  • Current I is flowing in a given conductor

  • Radius of curved part is r

  • Lenght of straight wire is infinity.

\Large\underline{\underline{\sf To\:Find:}}

  • Magnetic Field at the centre O

\Large\underline{\underline{\sf Formula\:Used:}}

Magnetic Field for circle is

{\boxed{\boxed{\sf \pink{B=\dfrac{\mu_oI}{2r}}}}}

\Large\underline{\underline{\sf Solution:}}

Magnetic Field at the centre O

{\boxed{\sf B=B_{FED}+B_{DC}+B_{FG}}}

Magnetic field for ¾ of circle is :

\implies{\sf B_{FED}=\dfrac{\mu_oI}{r}×\dfrac{3}{4}{\hat{k}} }

\implies{\sf B_{DC}=0}

\implies{\sf B_{FG}=\dfrac{\mu_oI}{4πd}[sin\theta_1+sin\theta_2]}

\implies{\sf \dfrac{\mu_oI}{4πd}[sin0°+sin90°]}

\implies{\sf \dfrac{\mu_oI}{4πd}[0+1] }

\implies{\sf \dfrac{\mu_oI}{4πr}}

Magnetic field at Centre O

\large{\sf B=\left[\dfrac{3}{4}×\dfrac{\mu_oI}{2π}+\dfrac{\mu_oI}{4πr}\right]{\hat{k}} }

\implies{\sf B=\dfrac{\mu_oI}{4r}\left[\dfrac{3}{2}+\dfrac{1}{π}\right]{\hat{k}} }

\implies{\sf B=\dfrac{\mu_oI}{4πr}\left[\dfrac{3π}{2}+1\right]}

\Large\underline{\underline{\sf Answer:}}

Magnetic field at Centre O is {\sf B=\dfrac{\mu_oI}{4πr}\left[\dfrac{3π}{2}+1\right]}

\Huge\underline{\underline{\bf \red{Question\:19}:}}

\Large\underline{\underline{\sf To\:Find:}}

Magnetic Induction in the given figure .

\Large\underline{\underline{\sf Solution:}}

Magnetic Induction due to semi-circular part

{\boxed{\boxed{\sf \pink{B=\dfrac{\mu_oI}{4r}}}}}

•°• Magnetic Induction for Radius \sf{R_1} and radius \sf{R_2} will be

\implies{\sf B=\dfrac{\mu_oI}{4}\left(\dfrac{1}{R_1}-\dfrac{1}{R_2}\right)}

\Large\underline{\underline{\sf Answer:}}

⛬ Magnetic Induction of the given figure is {\sf B=\dfrac{\mu_oI}{4}\left(\dfrac{1}{R_1}-\dfrac{1}{R_2}\right)}

Attachments:
Similar questions