Math, asked by ayan3945y, 11 hours ago

Pls give the solve..​

Attachments:

Answers

Answered by Anonymous
62

FULL EXPLANATION:

.

 \frac{ \sec(\theta) -  \tan(\theta)  }{ \sec(\theta)  +  \tan(\theta) }  =  \frac{36}{49} \:  \:  \: ...(given)  \\

So, We Can Say That,

\sec( \theta)    -    \tan(\theta)  = 36   \:  \:  \: ...(1)\\

\sec( \theta)   +   \tan(\theta)  = 49  \:  \:  \: ...(2) \\

So,

 \implies  \frac{ \sec(\theta) -  \tan(\theta)  }{ \sec(\theta)  +  \tan(\theta) }  =  \frac{36}{49}   \\

 \implies  \frac{ \sec(\theta) -  \tan(\theta) + \sec(\theta)  +  \tan(\theta)  }{ \sec(\theta)  +  \tan(\theta) }  =  \frac{36 + 49}{49}   \:  \:  \:  [by \: Eq \: (2)] \\

 \implies  \frac{ 2\sec(\theta)  }{ \sec(\theta)  +  \tan(\theta)  - (\sec(\theta) - \tan(\theta))}  =  \frac{85}{49 - 36}   \:  \:  \:  [by \: Eq \: (1)] \\

 \implies  \frac{ 2\sec(\theta)  }{ \sec(\theta)  +  \tan(\theta)  - \sec(\theta)  +  \tan(\theta)}  =  \frac{85}{13}    \\

 \implies  \frac{ 2\sec(\theta)  }{ 2  \tan(\theta)}  =  \frac{85}{13}    \\

 \implies  \frac{ \sec(\theta)  }{  \tan(\theta)}  =  \frac{85}{13}    \\

 \implies  \frac{ \frac{1}{  \cos(\theta)  }   }{   \frac{ \sin(\theta) }{ \cos(\theta) } }  =  \frac{85}{13}    \\

 \bigg[ \because \:  \sec( \theta)  =  \frac{1}{ \cos(\theta) }  \:  \:  \: and \:  \:  \:  \tan(\theta)  =  \frac{ \sin(\theta) }{ \cos(\theta) }  \:  \bigg] \\

 \implies  { \frac{1}{  \cos(\theta)  }   } \times {   \frac{ \cos(\theta) }{ \sin(\theta) } }  =  \frac{85}{13}    \\

 \implies  { \frac{1}{  \sin(\theta)  }   }  =  \frac{85}{13}    \\

 \implies   \boxed {\cosec(\theta)  =  \frac{85}{13} }   \\

As We Know That,

 \implies   \boxed {\sin ^{2} (\theta)  +  { \cos }^{2}(\theta)  =  1} \\

 \implies   { {(  \frac{13}{85}  )}^{2}   +  { \cos }^{2}(\theta)  =  1} \\

 \implies   { { \frac{169}{7225} }   +  { \cos }^{2}(\theta)  =  1} \\

 \implies    { \cos}^{2}(\theta)  =  1 -  \frac{169}{7225}  \\

 \implies    { \cos}^{2}(\theta)  =   \frac{7225 - 169}{7225}  \\

 \implies    { \cos }^{2}(\theta)  =   \frac{7056}{7225}  \\

 \implies    { \cos}(\theta)  =    \sqrt{\frac{7056}{7225}}  \\

 \implies    { \cos}(\theta)  =     \frac{84}{85}   \\

As We Know That,

  •  \sec( \theta)  =  \frac{1}{ \sec(\theta) }  \\

So,

 \implies \boxed {  \sec( \theta)  =  \frac{85}{ 84} } \\

Finding The Answer,

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   = \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }  \\

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   = \frac{  \frac{85}{13}  -   \frac{85}{84}  }{  \frac{85}{13}  +   \frac{85}{84}   }  \\

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   = \frac{  \frac{7140 - 1105}{1092}   }{  \frac{7140 + 1105}{1092}    }  \\

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   = \frac{  \frac{6035}{1092}   }{  \frac{8245}{1092} }  \\

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   =  \frac{6035}{1092}   \times  \frac{1092}{8245}   \\

 \implies    \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   =  \frac{6035}{8245}    \\

 \implies     \red{\boxed{ \frac{ \cosec( \theta)  -  \sec(\theta) }{ \cosec(\theta) +  \sec(\theta)  }   =  \frac{71}{97}}}    \\

Similar questions