Math, asked by areebas286, 6 months ago

...pls help..............

Attachments:

Answers

Answered by Anonymous
10

Given: \large\rm{ \sin^{-1} (1-x)-2 \ \sin^{-1} \ x = \dfrac{\pi}{2}}

\large\rm

To find: value of x

\large\rm

Answer: consider x as sin y

\large\rm

\large\rm{ \therefore \sin^{-1} (1- \sin \ y) - 2y = \dfrac{\pi}{2}}

\large\rm

\large\rm{ \implies \sin^{-1} (1- \sin \ y)  = \dfrac{\pi}{2}+ 2y}

\large\rm

\large\rm{ \implies 1 - \sin \ y = \sin \Bigg ( \dfrac{\pi}{2} + 2y \Bigg ) }

\large\rm

\large\rm{ 1 - \sin \ y = 2 \ \cos \ y}

\large\rm

\large\rm{ 2 \sin^{2} \ y - \sin \ y = 0}

\large\rm

\large\rm{ 2x^{2} - x = 0}

\large\rm

\large\rm{ x(2x-1) = 0}

\large\rm

\large\rm{ x = 0, x = \dfrac{1}{2}}

but x = ½ doesn't satisfy the equation.

x ½.

so, \large\rm{ \therefore x = 0}

Similar questions