Math, asked by Aastha120, 24 days ago

pls help and no spam.... ​

Attachments:

Answers

Answered by asgharkohati75
0

Answer:

[9/18, 2:24 PM] Zenifer: Mam maths ka Monday ko test hoga

[9/18, 2:24 PM] Mam Yusra Class Teacher: G

[9/18, 2:24 PM] Zenifer: Mam kon kon Şi exercises ka

[9/18, 2:25 PM] Mam Yusra Class Teacher: 6.1 to 6.4

[9/18, 2:25 PM] Zenifer: Okay mam

Answered by diwanamrmznu
4

GIVEN★

RHS

  =  \frac{1 -  \tan {}^{2} ( \alpha ) }{1 +  \tan {}^{2} ( \alpha ) }  \\

=LHS

 \cos {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha )

VERIFIED★

LHS=RHS

EVALUTION★

LHS

  •  \frac{1 -  \tan {}^{2} ( \alpha ) }{1 +  \tan {}^{2} ( \alpha ) } \\
  • we know that

  • 1  +  \tan {}^{2} ( \alpha )  =  \sec {}^{2} ( \alpha ) \\
  •  \frac{1 -  \tan {}^{2} ( \alpha ) }{ \sec {}^{2} ( \alpha ) }    \\  \\  =  \frac{1}{ \sec {}^{2} ( \alpha ) } -  \frac{ \tan {}^{2} ( \alpha ) }{ \sec {}^{2} ( \alpha ) } \\
  • we know that

  •  \frac{1}{ \sec( \alpha ) }  =  \cos( \alpha )  \\  \\  \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } \\
  •  =  \cos {}^{2} ( \alpha )  -  \frac{ \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) } }{ \frac{1}{ \cos {}^{2} ( \alpha ) } }  \\  \\  =  \cos {}^{2} ( \alpha )  -  \frac{ \sin {}^{2} ( \alpha ) \cos {}^{2} ( \alpha )  }{ \cos {}^{2} ( \alpha ) }  \\  \\   = \cos {}^{2} ( \alpha ) -  \sin {}^{2} ( \alpha )

RHS =LHS (hence proved)

==============

I hope it helps

Similar questions