Math, asked by sahaana10, 10 months ago

pls help.......fastt plss​

Attachments:

Answers

Answered by Anonymous
21

\huge\tt{\red{Given:}}

(sec\theta+tan\theta) ^{2}=\dfrac{csc\theta+1}{csc\theta-1}

\huge\tt{\red {To\:\:Prove}}

★LHS =RHS.

\huge\tt{\red {Concept\:\:Used:}}

★By taking LHS, we will try to get it in terms of RHS.

★We will use some basic formulae related to trignometery.

\huge\tt{\red {Answer:}}

LHS =

(sec\theta+tan\theta) ^{2}

=\left(\dfrac{1}{cos\theta}+\dfrac{sin\theta}{cos\theta}\right) ^{2}

=\left(\dfrac{1+sin\theta}{cos\theta}\right) ^{2}

=\dfrac{(1+sin\theta) ^{2}}{cos\theta^{2}}

=\dfrac{(1+sin\theta)(1+sin\theta)}{1-sin^{2}\theta}

=\dfrac{(1+sin\theta)(1+sin\theta)} {(1+sin\theta) (1-sin\theta) }

=\dfrac{\cancel{(1+sin\theta)}(1+sin\theta)} {\cancel{(1+sin\theta)} (1-sin\theta) }

=\dfrac{1+sin\theta}{1-sin\theta}

=\dfrac{1+\frac{1}{csc\theta}}{1-\frac{1}{csc\theta}}

=\dfrac{\frac{1+csc\theta}{csc\theta}}{\frac{1-csc\theta}{csc\theta}}

=\dfrac{\frac{1+csc\theta}{\cancel{csc\theta}}}{\frac{1-csc\theta}{\cancel{csc\theta}}}

={\underline{\boxed{\red{\dfrac{1+csc\theta}{1-csc\theta}}}}}

=RHS.

\large\orange{\boxed{\red{.\degree.\:(sec\theta+tan\theta) ^{2}}=\purple{\dfrac{csc\theta+1}{csc\theta-1}}}}

Hence proved.

<marquee scrollamount="1300">♥Answer by Rishabh♥</marquee>

Similar questions