Math, asked by rimidutta, 1 year ago

Pls help! Its urgent

Attachments:

Answers

Answered by AbhijithPrakash
4

Answer:

\sqrt{\left(1-\cos ^2\left(\phi\right)\right)\sec ^2\left(\phi\right)}=\tan \left(\phi\right)

Step-by-step explanation:

\sqrt{\left(1-\cos ^2\left(\phi\right)\right)\sec ^2\left(\phi\right)}

\gray{\sqrt{\left(1-\cos ^2\left(\phi\right)\right)\sec ^2\left(\phi\right)}}

=\sqrt{\sec ^2\left(\phi\right)}\sqrt{-\cos ^2\left(\phi\right)+1}

\gray{\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0}

\gray{\sqrt{\sec ^2\left(\phi\right)}=\sec \left(\phi\right)}

=\sec \left(\phi\right)\sqrt{-\cos ^2\left(\phi\right)+1}

\gray{\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1}

\gray{\mathrm{Therefore\:}1-\cos ^2\left(x\right)=\sin ^2\left(x\right)}

=\sqrt{\sin ^2\left(\phi\right)}\sec \left(\phi\right)

\gray{\sqrt{\sin ^2\left(\phi\right)}=\sin \left(\phi\right)}

=\sin \left(\phi\right)\sec \left(\phi\right)

\gray{\mathrm{Use\:the\:following\:identity:}\:\sec \left(x\right)=\dfrac{1}{\cos \left(x\right)}}

\gray{\mathrm{Use\:the\:following\:identity:}\:\dfrac{\sin \left(x\right)}{\cos \left(x\right)}=\tan \left(x\right)}

=\tan \left(\phi\right)

Answered by mathdude500
1

Answer:

Please find the attachment

Attachments:
Similar questions