Math, asked by mehulmalik77, 2 months ago

pls help its urgent i need it

Attachments:

Answers

Answered by Athul4152
18

\huge\mathfrak\red{question}

if \:  \: x \:  =  \frac{ \sqrt{6} +  \sqrt{7}  }{ \sqrt{7}  -  \sqrt{6} }  \: y =  \frac{ \sqrt{7}  -  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} } find \: x^{2}  +  {y}^{2} \\

\huge\mathfrak\blue{ Solution}

\bf \: {consider  \:  \:  \:  \:  \: x }

x =    \frac{  \sqrt{6}  +  \sqrt{7}  }{ \sqrt{7}  -  \sqrt{6} } \\

x =  \frac{ ( \sqrt{6}  +  \sqrt{7} )^{2} }{ (\sqrt{7} -  \sqrt{6}) \times ( \sqrt{7}  +  \sqrt{6}  ) }  \\

x =  \frac{13+ 2 \sqrt{42} }{7 - 6} \\

x =  13 + 2 \sqrt{42} \\

\bf{consider  \:  \:  \:  \:  \: y \:  }

y =  \frac{ \sqrt{7} -  \sqrt{6}  }{ \sqrt{7} +  \sqrt{6}  }  \\

y =  \frac{( \sqrt{7} -  \sqrt{6}) ^{2}   }{ \sqrt{7} ^{2}    -   \sqrt{6}^{2}  } \\

y = 13- 2 \sqrt{42}

 {x}^{2}  +  {y}^{2}  = (13 + 2 \sqrt{42}) ^{2}   + (13 - 2 \sqrt{42} )^{2}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2(13 ^{2}  +( 2 \sqrt{42} )^{2} )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2(169 + 168)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 674

Similar questions