pls help me doing 12-15th question
Answers
As a factor x² - 1 must be equal to 0.
x² - 1 = 0
x = ± 1
p(x) = x⁴ + ax³ + 2x² - 3x + b
p(1) = 0
1⁴ + a*1³ + 2*1² - 3*1 + b = 0
1 + a + 2 - 3 + b = 0
a + b = 0 _(i)
p(-1) = 0
-1⁴ + a*(-1)³ + 2*(-1)² - 3*(-1) + b = 0
1 - a + 2 + 3 + b = 0
b - a = -6 _(ii)
From (i) & (ii) , we get
- a = 3
- b = -3
▬▬▬▬▬▬▬▬
z - 3 = 0
z = 3
p(z) = az³ + 4z² + 3z - 4
p(3) = a*3³ + 4*3² + 3*3 - 4
p(3) = 27a + 36 + 9 - 4
p(3) = 27a + 41
f(z) = z³ - 4z + a
f(3) = 3³ - 4*3 + a = 15 + a
Since remainder are equal,
27a + 41 = 15 + a
26a = -26
a = -1
▬▬▬▬▬▬▬▬
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
9² = a² + b² + c² + 2*26
a² + b² + c² = 81 - 52 = 29
▬▬▬▬▬▬▬▬
a³ + b³ + c³ - 3abc = ( a + b + c)(a² + b² + c² - ab - bc - ca).
8a³ - b³ + 64c³ + 24abc
(2a)³ + (-b)³ + (4c)³ - 3*(2a)*(-b)*(4c)
(2a - b + 4c)(4a² + b² + 16c² + 2ab + 4bc - 8ac)
▬▬▬▬▬▬▬▬
12)
so
x=+-1
by putting x = 1 we get
p(1) = (1)^4+a(1)^3+2(1)^2-3(1)+b=0
= a+b=0 eq=1
by putting x= -1 we get
p(-1)= (-1)^4+a(-1)^3+2(-1)^2-3(-1)+b=0
-a+b=-6. eq=2
from equation 1 and 2 we get
a=3
b=(-3)
13)
given z-3=0
z=3
p(3)=a(3)^3+4(3)^2+3(3)-4
p(3)=27a+41
f(z)=z^3-4z+a
f(3)= (3)^3-4(3)+a
f(3)=15+a
as the reminder is same
26a=-26
a=(-1)
14)
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
9^2=a^2+b^2+c^2+2(26)
a^2+b^2+c^2=81-52=29
15)
hope it helps you ✌️✅✅✅