Math, asked by prathmking, 2 months ago

pls help me fastttttttt​

Attachments:

Answers

Answered by anindyaadhikari13
10

ANSWER.

  • xeˣ(x + 2)

SOLUTION.

Given –

 \tt \implies y =  {x}^{2}. {e}^{x}

 \tt \implies  \dfrac{dy}{dx}  =  \dfrac{d}{dx}({x}^{2}. {e}^{x})

Using differentiation rule,

 \tt \implies \dfrac{d}{dx}(f \times g) = g \dfrac{d}{dx}(f) + f \dfrac{d}{dx}(g)

 \tt \implies  \dfrac{dy}{dx}  =   {e}^{x} \dfrac{d}{dx}({x}^{2}) +  {x}^{2} \times  \dfrac{d}{dx}( {e}^{x} )

Note:

 \tt \implies \dfrac{d}{dx}( {x}^{n} ) = n {x}^{n - 1}

 \tt \implies \dfrac{d}{dx}( {e}^{x} ) =  {e}^{x}

Therefore,

 \tt \implies  \dfrac{dy}{dx}  =   {e}^{x}.2 {x}^{2 - 1} +  {x}^{2} {e}^{x}

 \tt \implies  \dfrac{dy}{dx}  =   2x{e}^{x} +  {x}^{2} {e}^{x}

 \tt \implies  \dfrac{dy}{dx}  =   x{e}^{x}(2+x)

 \tt \implies  \dfrac{dy}{dx}  =   x{e}^{x}(x + 2)

So, option A is the right answer.

Similar questions