Math, asked by Rachelt, 11 months ago

PLS HELP ME GUYS
ABCD is a parallelogram in which angle DAB = 80 degrees. Bisector of angle A and angle B meets CD at P. Prove that :
1. AD=DP
2. CP=CB
3. DC=2AD​

Attachments:

Answers

Answered by streetburner
15

Step-by-step explanation:

∠ C = 80°

Now, ∠D = ∠ B = 100°

So, AD = DP .

∠ BPA = 90° as ∠ PBA = CBP

∠BPC = 50° = ∠PBC

So, CP = CB

Also, DC = 2AD

DC = DP + PC

= AD + CB = AD + AD

= 2AD

Attachments:
Answered by Agastya0606
5

Given: angle DAB = 80, Bisector of angle A and angle B meets CD at P.

To find: Prove that :

                1. AD=DP

                2. CP=CB

                3. DC=2AD

Solution:

  • Now we have given that AP and BP is the angle bisector, so

            ang C = 80°

            ang DAP = 40

  • Now, ∠D = ∠ B = 100°
  • So, In triangle DAP,

             ang A + ang P + ang D = 180  .............(by angle sum property of a triangle)

  • So, AD = DP . ..............(i)
  • Now,

              ang BPA = 90° ............... (ang PBA =  ang CBP )

       also,

              ang BPC = 50° = ang PBC

  • So, CP = CB    ....................(ii)

  • So,

                 DC = DP + PC

                AD + CB = AD + AD

                = 2AD..............(iii)

Answer:

  • So we have proved that AD=DP, CP=CB and DC=2AD​ in i, ii and iii.
Similar questions