Math, asked by sid282, 1 year ago

pls help me I will mark u as brainliest

Attachments:

Answers

Answered by siddhartharao77
1
Given : x^2 - ( \sqrt{2} + 1)x + \sqrt{2} = 0

= > x^2 - \sqrt{2} x - x + \sqrt{2} = 0

= > x^2 - ( \sqrt{2} - 1)x + \sqrt{2} = 0

It is in the form of ax^2 + bx + c = 0. The solutions are:

(1)

x =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a}

x =  \frac{-(- \sqrt{2} - 1) +  \sqrt{(- \sqrt{2} - 1)^2 - 4 * 1 *  \sqrt{2} } }{2 * 1}

x =  \frac{-(-1 -  \sqrt{2}) +  \sqrt{1 +  \sqrt{2})^2 - 4 \sqrt{2}  }  }{2}

x =  \frac{-1(-1- \sqrt{2}) +  \sqrt{2}  - 1}{2}

x  =  \frac{1 +  \sqrt{2} +  \sqrt{2}- 1 }{2}

x =  \frac{2 \sqrt{2} }{2}

x =  \sqrt{2}



(2)

x =  \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

x =  \frac{-2- \sqrt{(- \sqrt{2} - 1)^2 - 4 * 1 *  \sqrt{2}  } }{2 * 1}

x =  \frac{-(1 -  \sqrt{2})-  \sqrt{(-1- \sqrt{2} )^2 - 1 * 4 \sqrt{2} }  }{2}

x =  \frac{-(-1 -  \sqrt{2}) -  \sqrt{(1 +  \sqrt{2} )^2 - 4 \sqrt{2} }  }{2}

x =  \frac{-(-1 -  \sqrt{2}) - ( \sqrt{2} -1 ) }{2}

x =  \frac{1 +  \sqrt{2} -  \sqrt{2} + 1 }{2}

x =  \frac{2}{2}

x = 1.



 Therefore : x = \sqrt{2} , x = 1



Hope this helps!

siddhartharao77: :-)
sid282: hi
Answered by Anonymous
1
Hi,

Please see the attached file!


Thanks
Attachments:
Similar questions