Math, asked by arya180806, 1 month ago

pls help me
if it's right I'll surely mark as brainliest

Attachments:

Answers

Answered by user0888
21

\large\text{\underline{Required}}

The value of \dfrac{2\sin A+\tan A}{2\tan A-\sin A} if \sec A=\dfrac{17}{15}.

\large\text{\underline{Solution}}

The main point of the question is the definition of \sec A.

\implies\sec A=\dfrac{1}{\cos A}

\large\red{\bigstar}\text{\underline{Tip!}}

Let's write the function in terms of \sec A.

\implies\text{(Given)}=\dfrac{2\sin A+\tan A}{2\tan A-\sin A}

\implies\text{(Given)}=\dfrac{2\sin A+\dfrac{\sin A}{\cos A}}{\dfrac{2\sin A}{\cos A}-\sin A}

\implies\text{(Given)}=\dfrac{2+\dfrac{1}{\cos A}}{\dfrac{2}{\cos A}-1}

\implies\text{(Given)}=\dfrac{2+\sec A}{2\sec A-1}

The fraction is in terms of \sec A which value is given as \dfrac{17}{15}.

\implies\text{(Given)}=\dfrac{2+\dfrac{17}{15}}{2\times\dfrac{17}{15}-1}

\large\red{\bigstar}\text{\underline{Tip!}}

What is the value of \dfrac{15}{15}? This question may sound easy because the value is 1. However, we know multiplying 1(a multiplicative identity) to any number does not change the initial value. Now each numerator and denominator gets multiplied 15.

\implies\text{(Given)}=\dfrac{30+17}{34-15}

\implies\text{(Given)}=\dfrac{47}{19}

And there is our answer.

\large\text{\underline{Conclusion}}

So, the required value is \dfrac{47}{19}.

Answered by esuryasinghmohan
2

Step-by-step explanation:

solution :

  • Sol Given secA =17/15

  • E=(2sinA -tanA )/(2 tanA -sinA )

  • E=(2sinA - sinA /cosA )/(2sinA /cosA - sinA )

  • E=sinA(2 - 1/cosA )/sinA (2/cosA - 1)

  • E=(2 - secA )/(2secA -1)

  • Putting the value of secA =17/15

  • E=(2 - 17/15)/(2×17/15 - 1)

  • E=13/19
Similar questions