Math, asked by sayan290, 5 months ago

pls help me in thiss​

Attachments:

Answers

Answered by Anonymous
58

Given:

  • Difference of the squares of two positive integers is 180 the square of the smaller number is 8 times the larger.

To Find:

  • the numbers

Solution:

 \bigstar \sf \: now \: let \: the \: small \: number \: be \: x \:  \\  \sf \: and \: larger \: number \: be \: y \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

let's frame an equation according to the given statement

\longmapsto\sf  \:  {y}^{2}  -  {x}^{2}  = 180

As given that y is 8 times more than x so, let's take 8x with y

{ : \implies} \sf8 {x}^{2}  -  {x}^{2}  = 180  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf {x}^{2}  - 18x + 10x - 180 \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \: x(x - 18) - 10(x - 18) \:  \:  \\  \\  \\ { : \implies} \sf(x - 18)(x - 10) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now let's take away- 10

\sf \longrightarrow {y}^{2}  = 8 {x} \:  \:   \:  \:  \:  \:  \:  \\  \\  \\ \sf \longrightarrow {y}^{2}  = 8(18) \\  \\  \\ \sf \longrightarrow \:  {y}^{2}  = 144 \:  \:  \\  \\  \\ \sf \longrightarrow \: y =  \sqrt{144}  \\  \\  \\ \bf \longrightarrow \pink{ y = 12 \bigstar}

Answered by SasmitaBiswal
1

Hope it's useful. Mark as the brainliest answer.

Give ❤️ to my all answers.

Attachments:
Similar questions