Math, asked by Dhruvi2212, 9 months ago

Pls help me out in this question​

Attachments:

Answers

Answered by Jyotishka66
43

<marquee>✌72°✌</marquee>\huge{\boxed{\red{\mathfrak{Answer}}}}

Given,

l||m

a:b=2:3.

Let the angles be 2x and 3x.

Therefore,

a+b=180° [Linear pair]

2x+3x=180°

5x=180°

x=180/5

x=36°

Therefore,

a=72°

Now,

a=y [Alternate exterior angles]

Therefore,

y=72°.

➡️HOPE IT HELPS⬅️

➡️MARK AS BRAINLIEST⬅️

➡️THANK MY ANSWERS⬅️

Answered by ItzArchimedes
9

 \bigstar \underline{\bf\orange{Diagram:}}

\setlength{\unitlength}{20} \begin{picture}(7, 7) \put(3,3 ){\vector(1, 0){2.5}}\put(3,3 ){\vector( - 1,0 ){2.5}}\put(3, 1.5){\vector(1, 0){2.5}}\put(3,1.5){\vector( - 1,0 ){2.5}}\put(3,2 ){\vector( - 1,1 ){2}}\put(3, 2){\vector(1,  - 1){2}}\qbezier(4.2, 1.5)(4.5, 1)(4, 1)\qbezier(1.25, 3)(1.5,3.25)(1.7,3.25 )\qbezier(2.5,3 )(2.5,3.5 )(1.7, 3.3)\put(5.5,3 ){ $ \tt l $ }\put(5.5,1.5 ){ $ \tt m $ }\put(4.3,0.9 ){ $ \tt y $ }\put(1, 4){ $ \tt  n $ }\put(0.9, 3.25){ $ \tt a  $ }\put(2.2,3.3 ){ $ \tt b $ }\put(5.3, 0.){\boxed{ $ \bf @Itz Archimedes $ }} \end{picture}

 \bigstar\underline{\bf \green{Solution:}}

Here ,

Line l has an angle of 180° . Since , it is a straight line and we have angle a & angle b on line l . Here , given angle a : angle b = 2 : 3

Let us assume angles a & b are part of x

Angle a : angle b = 2x : 3x

Now ,

\to 2x + 3x = 180°

\to 5x = 180°

\to x = \sf \dfrac{180}{5}

\to x = 36°

From the given figure

Angle a = Angle y

Since , angle a & y are alternate exterior & here we know that alternate exterior angles are always equal

Angle a = 2x

Substituting the value of x

Angle a = 2(36)

\angle a = 72°

\because \anglea = 72° = \angle y

\bf\underline{Hence , \angle y=72^\circ}

Similar questions